Sensor fusion and on-line monitoring of friction stir blind riveting for lightweight materials manufacturing

Zhe Gao, Weihong Guo, Jingjing Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Friction stir blind riveting (FSBR) is a recently developed manufacturing process for joining dissimilar lightweight materials. The objective of this study is to gain a better understanding of FSBR in joining carbon fiber-reinforced polymer composite and aluminum alloy sheets by developing a sensor fusion and process monitoring method. The proposed method establishes the relationship between the FSBR process and the quality of the joints by integrating feature extraction, feature selection, and classifier fusion. This study investigates the effectiveness of lower rank tensor decomposition methods in extracting features from multi-sensor, high-dimensional, heterogeneous profile data. The extracted features are combined with process parameters, material stack-up sequence, and engineering-driven features such as the peak force to provide rich information about the FSBR process. Sparse group lasso regression is adopted to select the optimal monitoring features. The selected features are fed into weighted classification fusion to estimate the quality of the joints. The fusion method integrates five individual classifiers with optimal weights. The correct classification rates resulted from various feature extraction and selection methods are assessed and compared. The proposed method can also be applied to other manufacturing processes with online sensing capabilities for the purpose of process monitoring and quality prediction.

Original languageEnglish (US)
Title of host publicationManufacturing Equipment and Systems
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791851371
DOIs
StatePublished - 2018
EventASME 2018 13th International Manufacturing Science and Engineering Conference, MSEC 2018 - College Station, United States
Duration: Jun 18 2018Jun 22 2018

Publication series

NameASME 2018 13th International Manufacturing Science and Engineering Conference, MSEC 2018
Volume3

Other

OtherASME 2018 13th International Manufacturing Science and Engineering Conference, MSEC 2018
Country/TerritoryUnited States
CityCollege Station
Period6/18/186/22/18

All Science Journal Classification (ASJC) codes

  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Sensor fusion and on-line monitoring of friction stir blind riveting for lightweight materials manufacturing'. Together they form a unique fingerprint.

Cite this