TY - GEN
T1 - Sensor-mission assignment in wireless sensor networks with energy harvesting
AU - Porta, Tom La
AU - Petrioli, Chiara
AU - Spenza, Dora
PY - 2011
Y1 - 2011
N2 - Sensor mission assignment concerns matching the sensing resources of a wireless sensor network (WSN) to appropriate tasks (missions), which may come to the network dynamically. Although solutions for WSNs with battery-operated nodes have been proposed for this problem, no attention has been given to networks whose nodes have energy harvesting capabilities, which impose quite a different energy model. In this paper we address this problem by providing both an analytical model and a distributed heuristic, called EN-MASSE, for energy harvesting WSNs. The objective of both model and EN-MASSE is to maximize the profit of the network, fully exploiting the harvesting technologies, while ensuring the execution of the most critical missions within a given target WSN lifetime. The performance of EN-MASSE is evaluated by simulations based on real solar energy traces. Our experiments show that EN-MASSE behaves very closely to the optimum provided by our model and significantly outperforms previously proposed solutions.
AB - Sensor mission assignment concerns matching the sensing resources of a wireless sensor network (WSN) to appropriate tasks (missions), which may come to the network dynamically. Although solutions for WSNs with battery-operated nodes have been proposed for this problem, no attention has been given to networks whose nodes have energy harvesting capabilities, which impose quite a different energy model. In this paper we address this problem by providing both an analytical model and a distributed heuristic, called EN-MASSE, for energy harvesting WSNs. The objective of both model and EN-MASSE is to maximize the profit of the network, fully exploiting the harvesting technologies, while ensuring the execution of the most critical missions within a given target WSN lifetime. The performance of EN-MASSE is evaluated by simulations based on real solar energy traces. Our experiments show that EN-MASSE behaves very closely to the optimum provided by our model and significantly outperforms previously proposed solutions.
UR - http://www.scopus.com/inward/record.url?scp=80052814038&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80052814038&partnerID=8YFLogxK
U2 - 10.1109/SAHCN.2011.5984925
DO - 10.1109/SAHCN.2011.5984925
M3 - Conference contribution
AN - SCOPUS:80052814038
SN - 9781457700934
T3 - 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, SECON 2011
SP - 413
EP - 421
BT - 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, SECON 2011
T2 - 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, SECON 2011
Y2 - 27 June 2011 through 30 June 2011
ER -