Abstract
The removal of product variants that form during downstream processing remains a challenge in the purification of recombinant therapeutic proteins. We examined the feasibility of separating variants with slightly different net charge using high-performance membrane ultrafiltration. A myoglobin variant was formed by reaction of the lysine ε-amino group with succinic anhydride. Sieving data were obtained over a range of solution conditions using commercial polyethersulfone ultrafiltration membranes. Maximum selectivity of about 7-fold was obtained at very low conductivity due to the strong electrostatic repulsion of the more negatively charged variant. Protein separations were performed by diafiltration. A two-stage process generated solutions of the normal myoglobin (in the permeate) and the charge variant (in the retentate), both at greater than 9-fold purification and 90% yield. These results provide the first demonstration that membrane systems can be used to separate proteins that differ by only a single charged amino acid residue.
Original language | English (US) |
---|---|
Pages (from-to) | 543-549 |
Number of pages | 7 |
Journal | Biotechnology progress |
Volume | 20 |
Issue number | 2 |
DOIs | |
State | Published - Mar 2004 |
All Science Journal Classification (ASJC) codes
- Biotechnology