Abstract
Secondary infection in patients with sepsis triggers a new wave of inflammatory response, which aggravates organ injury and increases mortality. Trained immunity boosts a potent and nonspecific response to the secondary challenge and has been considered beneficial for the host. Here, using a murine model of polymicrobial infection, we find that the primary infection reprograms granulocytes to boost enhanced inflammatory responses to the secondary infection, including the excessive production of inflammatory cytokines, respiratory burst, and augmented phagocytosis capacity. However, these reprogramed granulocytes exhibit “non-classic” characteristics of innate immune memory. Two mechanisms are independently involved in the innate immune memory of granulocytes: a metabolic shift in favor of glycolysis and fatty acid synthesis and chromatin remodeling leading to the transcriptional inactivity of genes encoding inhibitors of TLR4-initiated signaling pathways. Counteracting the deleterious effects of stressed granulocytes on anti-infection immunity might provide a strategy to fight secondary infections during sepsis.
Original language | English (US) |
---|---|
Article number | 113044 |
Journal | Cell Reports |
Volume | 42 |
Issue number | 9 |
DOIs | |
State | Published - Sep 26 2023 |
All Science Journal Classification (ASJC) codes
- General Biochemistry, Genetics and Molecular Biology