Serotonin-Mediated Activation of Serotonin Receptor Type 1 Oppositely Modulates Voltage-Gated Calcium Channel Currents in Rat Sensory Neurons Innervating Hindlimb Muscle

Laura Anselmi, Joyce S. Kim, Marc P. Kaufman, Shouhao Zhou, Victor Ruiz-Velasco

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Serotonin (5-HT) is a multifaceted neurotransmitter that has been described to play a role as a peripheral inflammatory mediator when released in ischemic or injured muscle. Dorsal root ganglia (DRG) neurons are key sensors of noxious stimuli that are released under inflammatory conditions or mechanical stress. Little information is available on the specific 5-HT receptor subtypes expressed in primary afferents that help regulate reflex pressor responses. In the present study, the whole-cell patch-clamp technique was employed to examine the modulation of voltage-gated calcium channel (CaV) 2.2 currents by 5- HT and to identify the 5-HT receptor subtype(s) mediating this response in acutely dissociated rat DRG neurons innervating triceps surae muscle. Our results indicate that exposure of 1,1'- dioctadecyl-3,3,30,30-tetramethylindocarbocyanine perchlorate (DiI)-labeled DRG neurons to 5-HT can exert three modulatory effects on CaV currents: high inhibition, low inhibition, and enhancement. Both 5-HT-mediated inhibition responses were blocked after pretreatment with pertussis toxin (PTX), indicating that 5-HT receptors are coupled to CaV2.2 via Gai/o protein subunits. Application of selective serotonin receptor type 1 (5-HT1) agonists revealed that modulation of CaV2.2 currents occurs primarily after 5-HT1A receptor subtype stimulation and minimally from 5-HT1D activation. Finally, the intrathecal administration of the selective 5-HT1A receptor agonist, 8- hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), significantly (P < 0.05) decreased the pressor response induced by intra-arterial administration of lactic acid. This suggests that 5-HT1A receptors are expressed presynaptically on primary afferent neurons innervating triceps surae muscle. Our findings indicate that preferential stimulation of 5-HT1 receptors, expressed on thin fiber muscle afferents, serves to regulate the reflex pressor response to metabolic stimuli.

Original languageEnglish (US)
Pages (from-to)309-321
Number of pages13
JournalMolecular pharmacology
Volume101
Issue number5
DOIs
StatePublished - May 1 2022

All Science Journal Classification (ASJC) codes

  • Molecular Medicine
  • Pharmacology

Fingerprint

Dive into the research topics of 'Serotonin-Mediated Activation of Serotonin Receptor Type 1 Oppositely Modulates Voltage-Gated Calcium Channel Currents in Rat Sensory Neurons Innervating Hindlimb Muscle'. Together they form a unique fingerprint.

Cite this