Abstract
Background: Sample sizes set on the basis of desired power and expected effect size are often too small to yield a confidence interval narrow enough to provide a precise estimate of a population value. APPROACH: Formulae are presented to achieve a confidence interval of desired width for four common statistical tests: finding the population value of a correlation coefficient (Pearson r), the mean difference between two populations (independent- and dependent-samples t tests), and the difference between proportions for two populations (chi-square for contingency tables). Discussion: Use of the formulae is discussed in the context of the two goals of research: (a) determining whether an effect exists and (b) determining how large the effect is. In addition, calculating the sample size needed to find a confidence interval that captures the smallest benefit of clinical importance is addressed.
Original language | English (US) |
---|---|
Pages (from-to) | 148-153 |
Number of pages | 6 |
Journal | Nursing Research |
Volume | 60 |
Issue number | 2 |
DOIs | |
State | Published - Mar 2011 |
All Science Journal Classification (ASJC) codes
- General Nursing