TY - GEN
T1 - Severe casing failure in multistage hydraulic fracturing using dual-scale modelling approach
AU - Yu, Hao
AU - Taleghani, Arash Dahi
AU - Lian, Zhanghua
AU - Mou, Yisheng
N1 - Funding Information:
This paper is supported by Sichuan Science and Technology Program (No. 2019YFH0165), and the authors are grateful for its contribution. The second author was supported by Energy Institute at Pennsylvania State University.
Publisher Copyright:
© 2021, Society of Petroleum Engineers
PY - 2021
Y1 - 2021
N2 - Field evidence of production logs after fracturing have documented the existence of abundant natural fractures in Weiyuan shale plays, which is widely acknowledged to have a positive impact on fracture network complexity. On the other hand, cases of severe casing failures have been frequently reported in this field during multistage fracturing jobs. Stress interference between two adjacent stages may intensify non-uniform loading on the casing string and accommodate failure. To better understand this problem, we establish a coupled 3D reservoir-scale model with complex well trajectory and tie it to a single well-scale model consisting of casing and the surrounding cement sheath. Using this model, we investigate the potential impacts of cement deficiency, clustered perforations, fracture geometry as well as spacing strategy on casing integrity. Our simulation results indicate that cement deficiency could intensify the load nonuniformity around the borehole which escalates the potential threats for casing failure. When cement deficiency reaches 45° along the minimum horizontal stress, it has the largest influence on the stress level in the casing. In addition, perforations could lower the casing strength, but the reduction may not change furthermore when the perforation diameter reaches a certain value. Moreover, impacts of fracture geometry and spacing on casing deformation are investigated. We conclude that the lower ratio of fracture length to its width and reasonable spacing strategy could help reduce the load non-uniformity on casing which avoid the casing deformation. The described workflow may be adopted in other areas to predict the possible casing failure problems induced by multistage hydraulic fracturing with cheap computational costs, to anticipate the challenges and avoid them by revisiting pumping schedule or spacing strategy.
AB - Field evidence of production logs after fracturing have documented the existence of abundant natural fractures in Weiyuan shale plays, which is widely acknowledged to have a positive impact on fracture network complexity. On the other hand, cases of severe casing failures have been frequently reported in this field during multistage fracturing jobs. Stress interference between two adjacent stages may intensify non-uniform loading on the casing string and accommodate failure. To better understand this problem, we establish a coupled 3D reservoir-scale model with complex well trajectory and tie it to a single well-scale model consisting of casing and the surrounding cement sheath. Using this model, we investigate the potential impacts of cement deficiency, clustered perforations, fracture geometry as well as spacing strategy on casing integrity. Our simulation results indicate that cement deficiency could intensify the load nonuniformity around the borehole which escalates the potential threats for casing failure. When cement deficiency reaches 45° along the minimum horizontal stress, it has the largest influence on the stress level in the casing. In addition, perforations could lower the casing strength, but the reduction may not change furthermore when the perforation diameter reaches a certain value. Moreover, impacts of fracture geometry and spacing on casing deformation are investigated. We conclude that the lower ratio of fracture length to its width and reasonable spacing strategy could help reduce the load non-uniformity on casing which avoid the casing deformation. The described workflow may be adopted in other areas to predict the possible casing failure problems induced by multistage hydraulic fracturing with cheap computational costs, to anticipate the challenges and avoid them by revisiting pumping schedule or spacing strategy.
UR - http://www.scopus.com/inward/record.url?scp=85116718735&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85116718735&partnerID=8YFLogxK
U2 - 10.2118/206216-MS
DO - 10.2118/206216-MS
M3 - Conference contribution
AN - SCOPUS:85116718735
T3 - Proceedings - SPE Annual Technical Conference and Exhibition
BT - Society of Petroleum Engineers - SPE Annual Technical Conference and Exhibition 2021, ATCE 2021
PB - Society of Petroleum Engineers (SPE)
T2 - SPE Annual Technical Conference and Exhibition 2021, ATCE 2021
Y2 - 21 September 2021 through 23 September 2021
ER -