Shape optimization of a compliant mechanism for an actively conformable rotor airfoil

Andrew Nissly, Mary Frecker, Phuriwat Anusonti-lnthra, Farhan Gandhi

Research output: Contribution to conferencePaperpeer-review

2 Scopus citations

Abstract

In the present study, the optimal shape of a limited amount of passive material in a compliant mechanism of predetermined topology was determined. The simple compliant mechanism with a small number of actuators can be packaged in the long, narrow space of the rotor airfoil cross-section. The compliant mechanism is designed for maximum rotation angle under actuation loads, and minimum deflection under aerodynamic loads. Rotation angle (RA) and Strain Energy (SE), are used as measures of the deflections created by the actuation and aerodynamic loads, respectively. The design objectives are achieved by maximizing a multi-criteria objective function that represents a ratio of the RA to SE. Shape optimization of the compliant mechanism is conducted and the results indicate that the optimal compliant mechanism consists of a passive substructure with uniform cross section. The optimal geometry of the compliant mechanism is also determined in a parametric study (optimal ratio of the length to height of 0.3), and this structure can produce rotation angle of 13 Deg/m. when the actuators provide 1% actuation strain. The deflection due to aerodynamic loads is extremely small. The performance of the mechanism is examined further with variations in material and actuator properties. Additional results include an analysis of a compliant mechanism structure based on a modified topology, which is introduced to reduce numbers of actuators.

Original languageEnglish (US)
Pages1595-1604
Number of pages10
DOIs
StatePublished - Jan 1 2004
Event2004 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference - Salt Lake City, UT, United States
Duration: Sep 28 2004Oct 2 2004

Other

Other2004 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Country/TerritoryUnited States
CitySalt Lake City, UT
Period9/28/0410/2/04

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'Shape optimization of a compliant mechanism for an actively conformable rotor airfoil'. Together they form a unique fingerprint.

Cite this