TY - JOUR
T1 - Shape-selective isopropylation of naphthalene over H-mordenite catalysts for environmentally friendly synthesis of 2,6-dialkylnaphthalene
AU - Song, Chunshan
PY - 2000/11
Y1 - 2000/11
N2 - Recent development of advanced polymer materials such as polyethylene naphthalate, polybutylene naphthalate and liquid crystalline polymers has created an increasing demand for 2,6-dialkylnaphthalene, which has spurred interest in shape-selective naphthalene alkylation. This work deals with mordenite-catalyzed shape-selective naphthalene isopropylation to produce 2,6-diisopropylnaphthalene (2,6-DIPN). Effects of dealumination of mordenite on the structural and acidic characteristics and on the shape selectivity and activity were examined by physicochemical analysis, TPD, solid-state 27Al and 29Si MAS NMR, XRD, as well as catalytic alkylation reactions. Dealumination removes octahedral Al species as well as tetrahedral Al species, decreases the unit cell dimensions and reduces the number of strong acid sites in mordenites. Proper dealumination can improve selectivity to 2,6-DIPN from 33 to 61 % and significantly increases 2,6/2,7 ratio. Improved selectivity to 2,6-DIPN upon proper dealumination was attributed to the decrease in mordenite acidity, reduction in unit cell dimension and removal of some strong acid sites. However, neither the change in selectivity nor that in activity is a simple function of dealumination degree or SiO2/Al2O3 ratio. Some minor difference in the apparent framework SiO2/Al2O3 ratio can result in a major difference in activity or selectivity. There exist optimum conditions of dealumination as well as optimum reaction conditions for achieving higher selectivity to 2,6-DIPN.
AB - Recent development of advanced polymer materials such as polyethylene naphthalate, polybutylene naphthalate and liquid crystalline polymers has created an increasing demand for 2,6-dialkylnaphthalene, which has spurred interest in shape-selective naphthalene alkylation. This work deals with mordenite-catalyzed shape-selective naphthalene isopropylation to produce 2,6-diisopropylnaphthalene (2,6-DIPN). Effects of dealumination of mordenite on the structural and acidic characteristics and on the shape selectivity and activity were examined by physicochemical analysis, TPD, solid-state 27Al and 29Si MAS NMR, XRD, as well as catalytic alkylation reactions. Dealumination removes octahedral Al species as well as tetrahedral Al species, decreases the unit cell dimensions and reduces the number of strong acid sites in mordenites. Proper dealumination can improve selectivity to 2,6-DIPN from 33 to 61 % and significantly increases 2,6/2,7 ratio. Improved selectivity to 2,6-DIPN upon proper dealumination was attributed to the decrease in mordenite acidity, reduction in unit cell dimension and removal of some strong acid sites. However, neither the change in selectivity nor that in activity is a simple function of dealumination degree or SiO2/Al2O3 ratio. Some minor difference in the apparent framework SiO2/Al2O3 ratio can result in a major difference in activity or selectivity. There exist optimum conditions of dealumination as well as optimum reaction conditions for achieving higher selectivity to 2,6-DIPN.
UR - http://www.scopus.com/inward/record.url?scp=0034311621&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034311621&partnerID=8YFLogxK
U2 - 10.1016/S1387-1609(00)01164-6
DO - 10.1016/S1387-1609(00)01164-6
M3 - Review article
AN - SCOPUS:0034311621
SN - 1387-1609
VL - 3
SP - 477
EP - 496
JO - Comptes Rendus de l'Academie des Sciences - Series IIc: Chemistry
JF - Comptes Rendus de l'Academie des Sciences - Series IIc: Chemistry
IS - 6
ER -