SHIELD: Defending Textual Neural Networks against Multiple Black-Box Adversarial Attacks with Stochastic Multi-Expert Patcher

Thai Le, Noseong Park, Dongwon Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

17 Scopus citations

Abstract

Even though several methods have proposed to defend textual neural network (NN) models against black-box adversarial attacks, they often defend against a specific text perturbation strategy and/or require re-training the models from scratch. This leads to a lack of generalization in practice and redundant computation. In particular, the state-of-the-art transformer models (e.g., BERT, RoBERTa) require great time and computation resources. By borrowing an idea from software engineering, in order to address these limitations, we propose a novel algorithm, SHIELD, which modifies and re-trains only the last layer of a textual NN, and thus it “patches” and “transforms” the NN into a stochastic weighted ensemble of multi-expert prediction heads. Considering that most of current black-box attacks rely on iterative search mechanisms to optimize their adversarial perturbations, SHIELD confuses the attackers by automatically utilizing different weighted ensembles of predictors depending on the input. In other words, SHIELD breaks a fundamental assumption of the attack, which is a victim NN model remains constant during an attack. By conducting comprehensive experiments, we demonstrate that all of CNN, RNN, BERT, and RoBERTa-based textual NNs, once patched by SHIELD, exhibit a relative enhancement of 15%-70% in accuracy on average against 14 different black-box attacks, outperforming 6 defensive baselines across 3 public datasets. Source code will be published at github.com/lethaiq/shield-defend-adversarial-texts.

Original languageEnglish (US)
Title of host publicationACL 2022 - 60th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers)
EditorsSmaranda Muresan, Preslav Nakov, Aline Villavicencio
PublisherAssociation for Computational Linguistics (ACL)
Pages6661-6674
Number of pages14
ISBN (Electronic)9781955917216
StatePublished - 2022
Event60th Annual Meeting of the Association for Computational Linguistics, ACL 2022 - Dublin, Ireland
Duration: May 22 2022May 27 2022

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
Volume1
ISSN (Print)0736-587X

Conference

Conference60th Annual Meeting of the Association for Computational Linguistics, ACL 2022
Country/TerritoryIreland
CityDublin
Period5/22/225/27/22

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'SHIELD: Defending Textual Neural Networks against Multiple Black-Box Adversarial Attacks with Stochastic Multi-Expert Patcher'. Together they form a unique fingerprint.

Cite this