TY - GEN
T1 - Shift-invariant Subspace Tracking with Missing Data
AU - Cho, Myung
AU - Chi, Yuejie
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/5
Y1 - 2019/5
N2 - Subspace tracking is an important problem in signal processing that finds applications in wireless communications, video surveillance, and source localization in radar and sonar. In recent years, it is recognized that a low-dimensional subspace can be estimated and tracked reliably even when the data vectors are partially observed with many missing entries, which is greatly desirable when processing high-dimensional and high-rate data to reduce the sampling requirement. This paper is motivated by the observation that the underlying low-dimensional subspace may possess additional structural properties induced by the physical model of data, which if harnessed properly, can greatly improve subspace tracking performance. As a case study, this paper investigates the problem of tracking direction-of-arrivals from subsampled observations in a unitary linear array, where the signals lie in a subspace spanned by columns of a Vandermonde matrix. We exploit the shift-invariant structure by mapping the data vector to a latent Hankel matrix, and then perform tracking over the Hankel matrices by exploiting their low-rank properties. Numerical simulations are conducted to validate the superiority of the proposed approach over existing subspace tracking methods that do not exploit the additional shift-invariant structure in terms of tracking speed and agility.
AB - Subspace tracking is an important problem in signal processing that finds applications in wireless communications, video surveillance, and source localization in radar and sonar. In recent years, it is recognized that a low-dimensional subspace can be estimated and tracked reliably even when the data vectors are partially observed with many missing entries, which is greatly desirable when processing high-dimensional and high-rate data to reduce the sampling requirement. This paper is motivated by the observation that the underlying low-dimensional subspace may possess additional structural properties induced by the physical model of data, which if harnessed properly, can greatly improve subspace tracking performance. As a case study, this paper investigates the problem of tracking direction-of-arrivals from subsampled observations in a unitary linear array, where the signals lie in a subspace spanned by columns of a Vandermonde matrix. We exploit the shift-invariant structure by mapping the data vector to a latent Hankel matrix, and then perform tracking over the Hankel matrices by exploiting their low-rank properties. Numerical simulations are conducted to validate the superiority of the proposed approach over existing subspace tracking methods that do not exploit the additional shift-invariant structure in terms of tracking speed and agility.
UR - http://www.scopus.com/inward/record.url?scp=85068973072&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85068973072&partnerID=8YFLogxK
U2 - 10.1109/ICASSP.2019.8683025
DO - 10.1109/ICASSP.2019.8683025
M3 - Conference contribution
AN - SCOPUS:85068973072
T3 - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
SP - 8222
EP - 8225
BT - 2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019
Y2 - 12 May 2019 through 17 May 2019
ER -