TY - JOUR
T1 - Short communication
T2 - Effect of a citrus extract in lactating dairy cows
AU - Ying, Y.
AU - Niu, M.
AU - Clarke, A. R.
AU - Harvatine, K. J.
N1 - Publisher Copyright:
© 2017 American Dairy Science Association
PY - 2017/7
Y1 - 2017/7
N2 - Dry matter intake is a main driver of energy balance in lactating dairy cows, and some plant extracts have been commercially fed to dairy cows to stimulate feed intake. Citrus extracts contain several bioactive components and have been shown to modify metabolism in other animal models. Our hypothesis was that a citrus extract would increase dry matter intake. Two experiments were conducted to determine the effect of a citrus extract on intake and milk production in lactating dairy cows. In experiment one, 11 early-lactation dairy cows (experiment 1; 77 ± 15 d in milk, mean ± standard deviation) were used in a switchback design, and in experiment two, 15 mid-lactation Holstein cows (experiment 2; 157 ± 44 d in milk, mean ± standard deviation) were used in a crossover design. In both experiments, treatments were control (no supplement) or a citrus extract (4 g/d in experiment 1 and 4.5 g/d in experiment 2). Treatment periods were 21 and 14 d in experiment 1 and experiment 2, respectively, with the final 7 d used for sample and data collection. No effect was observed for treatment on dry matter intake, feeding behavior, milk yield, milk fat yield, milk protein yield, or milk composition in either experiment. Treatment also had no effect on milk trans fatty acid profile, but the extract increased total 16 carbon fatty acids 0.9 and 0.6 percentage points in experiment 1 and experiment 2, respectively. Plasma nonesterified fatty acids were decreased 6 h after feeding in both experiments (11.1 and 16.0 μEq/L in experiment 1 and experiment 2, respectively). Plasma insulin was increased 1 h before feeding compared with the control in experiment 1 (3.36 vs. 2.13 µIU/mL) and tended to increase 1.79 units 1 h before feeding in experiment 2. The citrus extract had no effect on feed intake or milk production at the dose investigated, but changed plasma insulin and nonesterified fatty acids, indicating some metabolic effects requiring further investigation.
AB - Dry matter intake is a main driver of energy balance in lactating dairy cows, and some plant extracts have been commercially fed to dairy cows to stimulate feed intake. Citrus extracts contain several bioactive components and have been shown to modify metabolism in other animal models. Our hypothesis was that a citrus extract would increase dry matter intake. Two experiments were conducted to determine the effect of a citrus extract on intake and milk production in lactating dairy cows. In experiment one, 11 early-lactation dairy cows (experiment 1; 77 ± 15 d in milk, mean ± standard deviation) were used in a switchback design, and in experiment two, 15 mid-lactation Holstein cows (experiment 2; 157 ± 44 d in milk, mean ± standard deviation) were used in a crossover design. In both experiments, treatments were control (no supplement) or a citrus extract (4 g/d in experiment 1 and 4.5 g/d in experiment 2). Treatment periods were 21 and 14 d in experiment 1 and experiment 2, respectively, with the final 7 d used for sample and data collection. No effect was observed for treatment on dry matter intake, feeding behavior, milk yield, milk fat yield, milk protein yield, or milk composition in either experiment. Treatment also had no effect on milk trans fatty acid profile, but the extract increased total 16 carbon fatty acids 0.9 and 0.6 percentage points in experiment 1 and experiment 2, respectively. Plasma nonesterified fatty acids were decreased 6 h after feeding in both experiments (11.1 and 16.0 μEq/L in experiment 1 and experiment 2, respectively). Plasma insulin was increased 1 h before feeding compared with the control in experiment 1 (3.36 vs. 2.13 µIU/mL) and tended to increase 1.79 units 1 h before feeding in experiment 2. The citrus extract had no effect on feed intake or milk production at the dose investigated, but changed plasma insulin and nonesterified fatty acids, indicating some metabolic effects requiring further investigation.
UR - http://www.scopus.com/inward/record.url?scp=85019562063&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85019562063&partnerID=8YFLogxK
U2 - 10.3168/jds.2016-12233
DO - 10.3168/jds.2016-12233
M3 - Article
C2 - 28527798
AN - SCOPUS:85019562063
SN - 0022-0302
VL - 100
SP - 5468
EP - 5471
JO - Journal of dairy science
JF - Journal of dairy science
IS - 7
ER -