Abstract
Silicon (Si) nanostructure solar cells have been synthesized using a nanowire (NW) array as the surface texturing. Optical-reflection measurement exhibits an excellent photon-harvesting property for the Si-NW-array texturization. Less than 2% reflection ratio at an 800 nm wavelength was achieved. Results show that an optimized 125×125 mm2 Si nanostructure solar cell with an excellent photon-harvesting property has a 35.4% higher energy-conversion efficiency than the c -Si solar cell due to its enhanced optical-absorption characteristics. However, for the nanostructured solar cells, the decrease in external quantum efficiencies in the short-wavelength region proves that the surface recombination plays a critical role in determining the final quantum-efficiency performance, indicating that optimum surface passivation was a prerequisite in high-efficiency Si nanostructure solar cells.
Original language | English (US) |
---|---|
Article number | 021014 |
Journal | Journal of Vacuum Science and Technology B |
Volume | 29 |
Issue number | 2 |
DOIs | |
State | Published - 2011 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Instrumentation
- Process Chemistry and Technology
- Surfaces, Coatings and Films
- Electrical and Electronic Engineering
- Materials Chemistry