Simba: Spatial in-memory big data analysis

Dong Xie, Feifei Li, Bin Yao, Gefei Li, Zhongpu Chen, Liang Zhou, Minyi Guo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

13 Scopus citations

Abstract

We present the Simba (Spatial In-Memory Big data Analytics) system, which offers scalable and efficient in-memory spatial query processing and analytics for big spatial data. Simba natively extends the Spark SQL engine to support rich spatial queries and analytics through both SQL and DataFrame API. It enables the construction of indexes over RDDs inside the engine in order to work with big spatial data and complex spatial operations. Simba also comes with an effective query optimizer, which leverages its indexes and novel spatial-aware optimizations, to achieve both low latency and high throughput in big spatial data analysis. This demonstration proposal describes key ideas in the design of Simba, and presents a demonstration plan.

Original languageEnglish (US)
Title of host publication24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2016
EditorsMatthias Renz, Mohamed Ali, Shawn Newsam, Matthias Renz, Siva Ravada, Goce Trajcevski
PublisherAssociation for Computing Machinery
ISBN (Electronic)9781450345897
DOIs
StatePublished - Oct 31 2016
Event24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2016 - Burlingame, United States
Duration: Oct 31 2016Nov 3 2016

Publication series

NameGIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems

Other

Other24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2016
Country/TerritoryUnited States
CityBurlingame
Period10/31/1611/3/16

All Science Journal Classification (ASJC) codes

  • Earth-Surface Processes
  • Computer Science Applications
  • Modeling and Simulation
  • Computer Graphics and Computer-Aided Design
  • Information Systems

Fingerprint

Dive into the research topics of 'Simba: Spatial in-memory big data analysis'. Together they form a unique fingerprint.

Cite this