Simplified ChIP-exo assays

Matthew J. Rossi, William K.M. Lai, B. Franklin Pugh

Research output: Contribution to journalArticlepeer-review

63 Scopus citations

Abstract

ChIP-seq and ChIP-exo identify where proteins bind along any genome in vivo. Although ChIP-seq is widely adopted in academic research, it has inherently high noise. In contrast, ChIP-exo has relatively low noise and achieves near-base pair resolution. Consequently, and unlike other genomic assays, ChIP-exo provides structural information on genome-wide binding proteins. Construction of ChIP-exo libraries is technically difficult. Here we describe greatly simplified ChIP-exo methods, each with use-specific advantages. This is achieved through assay optimization and use of Tn5 tagmentation and/or single-stranded DNA ligation. Greater library yields, lower processing time, and lower costs are achieved. In comparing assays, we reveal substantial limitations in other ChIP-based assays. Importantly, the new ChIP-exo assays allow high-resolution detection of some protein-DNA interactions in organs and in as few as 27,000 cells. It is suitable for high-throughput parallelization. The simplicity of ChIP-exo now makes it a highly appropriate substitute for ChIP-seq, and for broader adoption.

Original languageEnglish (US)
Article number2842
JournalNature communications
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2018

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Simplified ChIP-exo assays'. Together they form a unique fingerprint.

Cite this