TY - GEN
T1 - Simulating Markovian Open Quantum Systems Using Higher-Order Series Expansion
AU - Li, Xiantao
AU - Wang, Chunhao
N1 - Publisher Copyright:
© Xiantao Li and Chunhao Wang.
PY - 2023/7
Y1 - 2023/7
N2 - We present an efficient quantum algorithm for simulating the dynamics of Markovian open quantum systems. The performance of our algorithm is similar to the previous state-of-the-art quantum algorithm, i.e., it scales linearly in evolution time and poly-logarithmically in inverse precision. However, our algorithm is conceptually cleaner, and it only uses simple quantum primitives without compressed encoding. Our approach is based on a novel mathematical treatment of the evolution map, which involves a higher-order series expansion based on Duhamel’s principle and approximating multiple integrals using scaled Gaussian quadrature. Our method easily generalizes to simulating quantum dynamics with time-dependent Lindbladians. Furthermore, our method of approximating multiple integrals using scaled Gaussian quadrature could potentially be used to produce a more efficient approximation of time-ordered integrals, and therefore can simplify existing quantum algorithms for simulating time-dependent Hamiltonians based on a truncated Dyson series.
AB - We present an efficient quantum algorithm for simulating the dynamics of Markovian open quantum systems. The performance of our algorithm is similar to the previous state-of-the-art quantum algorithm, i.e., it scales linearly in evolution time and poly-logarithmically in inverse precision. However, our algorithm is conceptually cleaner, and it only uses simple quantum primitives without compressed encoding. Our approach is based on a novel mathematical treatment of the evolution map, which involves a higher-order series expansion based on Duhamel’s principle and approximating multiple integrals using scaled Gaussian quadrature. Our method easily generalizes to simulating quantum dynamics with time-dependent Lindbladians. Furthermore, our method of approximating multiple integrals using scaled Gaussian quadrature could potentially be used to produce a more efficient approximation of time-ordered integrals, and therefore can simplify existing quantum algorithms for simulating time-dependent Hamiltonians based on a truncated Dyson series.
UR - http://www.scopus.com/inward/record.url?scp=85167345724&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85167345724&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.ICALP.2023.87
DO - 10.4230/LIPIcs.ICALP.2023.87
M3 - Conference contribution
AN - SCOPUS:85167345724
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 50th International Colloquium on Automata, Languages, and Programming, ICALP 2023
A2 - Etessami, Kousha
A2 - Feige, Uriel
A2 - Puppis, Gabriele
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 50th International Colloquium on Automata, Languages, and Programming, ICALP 2023
Y2 - 10 July 2023 through 14 July 2023
ER -