Ultrasound guidance is used for a variety of surgical needle insertion procedures, but there is currently no standard for the teaching of ultrasound skills. Recently, computer ultrasound simulation has been introduced as an alternative teaching method to traditional manikin and cadaver training because of its ability to provide diverse scenario training, quantitative feedback, and objective assessment. Current computer ultrasound training simulation is limited in its ability to image tissue deformation caused by needle insertions, even though tissue deformation identification is a critical skill in performing an ultrasound-guided needle insertion. To fill this need for improved simulation, a novel method of simulating ultrasound tissue-needle deformation is proposed and evaluated. First, a cadaver study is conducted to obtain ultrasound video of a peripheral nerve block. Then, optical flow analysis is conducted on this video to characterize the tissue movement due to the needle insertion. Tissue movement is characterized into three zones of motion: tissue near the needle being pulled, and zones above and below the needle where the tissue rolls. The rolling zones were centered 1.34mm above and below the needle and 4.53mm behind the needle. Using this characterization, a vector field is generated mimicking these zones. This vector field is then applied to an ultrasound image using inverse mapping to simulate tissue movement. The resulting simulation can be processed at 3.1 frames per second. This methodology can be applied through future optimized graphical processing to allow for accurate real time needle tissue simulation.

Original languageEnglish (US)
Article number101004
JournalJournal of Computational and Nonlinear Dynamics
Issue number10
StatePublished - Oct 2019

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Mechanical Engineering
  • Applied Mathematics


Dive into the research topics of 'Simulating ultrasound tissue deformation using inverse mapping'. Together they form a unique fingerprint.

Cite this