TY - JOUR
T1 - Simulating Urban Form and Energy Consumption in the Pearl River Delta Under Different Development Strategies
AU - Chen, Yimin
AU - Li, Xia
AU - Wang, Shujie
AU - Liu, Xiaoping
AU - Ai, Bin
N1 - Funding Information:
Actualmente China es el más grande consumidor de energía del mundo. El rápido crecimiento en consumo de energía ha dado lugar a muchos problemas en este país. El gobierno chino se ha percatado de la necesidad de mejorar la eficiencia energética y reducir el consumo de energía. Como útil herramienta en la que apoyar decisiones sobre el particular, se pueden utilizar modelos de simulación para examinar los impactos potenciales que puedan derivarse de diferentes planes sobre desarrollo urbano y consumo de energía. Este estudio introduce un modelo que integra la regresión de vectores de sostén (SVR) y el autómata celular (CA) para simular formas urbanas y calcular el correspondiente consumo de energía en una de las regiones más desarrolladas de China, el Delta del Río Perla (DRP). La regresión SVR se utiliza para para pronosticar el consumo de energía y para proyectar el tamaño urbano futuro. El modelo logístico CA simula diferentes formas urbanas para evaluar sus efectos sobre el consumo de energía. En este estudio simulamos cuatro escenarios para estimar los impactos de diferentes estrategias del desarrollo de formas urbanas y el consumo energético relacionado. Para cada escenario utilizamos el modelo para pronosticar la demanda de tierra y de consumo de energía. El resultado indica que la demanda de tierra es más sensible a los cambios de la estructura económica que el consumo de energía. La comparación de los diferentes escenarios simulados sugiere que promover industrias de bajo consumo energético
PY - 2013/11
Y1 - 2013/11
N2 - China is currently the world's largest energy consumer. The rapid growth in energy consumption has resulted in many problems in this country. The Chinese government has realized the necessity of improving energy efficiency and reducing energy consumption. As a useful decision-support tool, simulation models can be used to examine the potential impacts of different plans on urban development and energy consumption. This study presents a model that integrates support vector regression (SVR) and cellular automata (CA) to simulate urban forms and to estimate the corresponding energy consumption in one of the most developed regions in China, the Pearl River Delta (PRD). SVR is used to predict energy consumption and to project future urban size. The logistic CA model simulates different urban forms to evaluate their effects on energy consumption. In this study, we simulated four scenarios to assess the impacts of different development strategies on urban forms and the related energy consumption. For each scenario, we used the model to predict land demand and energy consumption. The result indicates that land demand is more sensitive to changes of economic structure than is energy consumption. The comparison of different simulated scenarios suggests that promoting low-energy-consuming industries is the most effective strategy to balance economic development and energy and land consumption.
AB - China is currently the world's largest energy consumer. The rapid growth in energy consumption has resulted in many problems in this country. The Chinese government has realized the necessity of improving energy efficiency and reducing energy consumption. As a useful decision-support tool, simulation models can be used to examine the potential impacts of different plans on urban development and energy consumption. This study presents a model that integrates support vector regression (SVR) and cellular automata (CA) to simulate urban forms and to estimate the corresponding energy consumption in one of the most developed regions in China, the Pearl River Delta (PRD). SVR is used to predict energy consumption and to project future urban size. The logistic CA model simulates different urban forms to evaluate their effects on energy consumption. In this study, we simulated four scenarios to assess the impacts of different development strategies on urban forms and the related energy consumption. For each scenario, we used the model to predict land demand and energy consumption. The result indicates that land demand is more sensitive to changes of economic structure than is energy consumption. The comparison of different simulated scenarios suggests that promoting low-energy-consuming industries is the most effective strategy to balance economic development and energy and land consumption.
UR - http://www.scopus.com/inward/record.url?scp=84886405230&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84886405230&partnerID=8YFLogxK
U2 - 10.1080/00045608.2012.740360
DO - 10.1080/00045608.2012.740360
M3 - Article
AN - SCOPUS:84886405230
SN - 0004-5608
VL - 103
SP - 1567
EP - 1585
JO - Annals of the Association of American Geographers
JF - Annals of the Association of American Geographers
IS - 6
ER -