TY - JOUR
T1 - Simulation of Taylor flow evaporation for bubble-pump applications
AU - Rattner, Alexander S.
AU - Garimella, Srinivas
N1 - Publisher Copyright:
© 2017 Elsevier Ltd
PY - 2018
Y1 - 2018
N2 - Single-pressure absorption systems incorporate bubble-pump generators (BPGs) for refrigerant separation and passive fluid circulation. In conventional spot-heated BPGs, heat is transferred over a small area, requiring high source temperatures. Distributed-heated BPGs receive thermal input over most of the component surface, enabling low temperature operation. In this investigation, a Volume-of-Fluid phase-change simulation formulation is developed and validated. This approach is applied to the evaporating Taylor flow pattern in distributed-heated BPGs. A 2-D axisymmetric simulation is performed, which yields detailed information about the developing heat transfer and two-phase flow phenomena. Results are used to assess predicted trends and sub-models from a 1-D segmented BPG model. Close agreement is obtained between segmented model and simulation results for bubble rise velocity (5–7% deviation), bubble and slug lengths, void fraction (3%), and hydrodynamic pressure drop (18%). Specifying average Taylor bubble lengths from the simulation as an input to the segmented model reduces hydrodynamic pressure drop deviation to 6%. Simulated flow-evaporation heat transfer coefficients are significantly higher than those predicted using analytic models from the literature. A new flow evaporation heat transfer correlation that accounts for developing slug flow effects is proposed, and yields close agreement with simulation results for heat transfer coefficient (AAD = 11%) and overall heat transfer rate (2%). Overall, this investigation provides validation for a distributed-heated BPG modeling approach, which can enable passive refrigeration for diverse applications.
AB - Single-pressure absorption systems incorporate bubble-pump generators (BPGs) for refrigerant separation and passive fluid circulation. In conventional spot-heated BPGs, heat is transferred over a small area, requiring high source temperatures. Distributed-heated BPGs receive thermal input over most of the component surface, enabling low temperature operation. In this investigation, a Volume-of-Fluid phase-change simulation formulation is developed and validated. This approach is applied to the evaporating Taylor flow pattern in distributed-heated BPGs. A 2-D axisymmetric simulation is performed, which yields detailed information about the developing heat transfer and two-phase flow phenomena. Results are used to assess predicted trends and sub-models from a 1-D segmented BPG model. Close agreement is obtained between segmented model and simulation results for bubble rise velocity (5–7% deviation), bubble and slug lengths, void fraction (3%), and hydrodynamic pressure drop (18%). Specifying average Taylor bubble lengths from the simulation as an input to the segmented model reduces hydrodynamic pressure drop deviation to 6%. Simulated flow-evaporation heat transfer coefficients are significantly higher than those predicted using analytic models from the literature. A new flow evaporation heat transfer correlation that accounts for developing slug flow effects is proposed, and yields close agreement with simulation results for heat transfer coefficient (AAD = 11%) and overall heat transfer rate (2%). Overall, this investigation provides validation for a distributed-heated BPG modeling approach, which can enable passive refrigeration for diverse applications.
UR - http://www.scopus.com/inward/record.url?scp=85029395501&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85029395501&partnerID=8YFLogxK
U2 - 10.1016/j.ijheatmasstransfer.2017.08.110
DO - 10.1016/j.ijheatmasstransfer.2017.08.110
M3 - Article
AN - SCOPUS:85029395501
SN - 0017-9310
VL - 116
SP - 231
EP - 247
JO - International Journal of Heat and Mass Transfer
JF - International Journal of Heat and Mass Transfer
ER -