Simulation of the dynamic radar cross section variations of a human emulator calibration target for through-wall and through-rubble radar

Taeyoung Kim, Ram M. Narayanan, John R. Jendzurski, Nicholas G. Paulter

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations


Through-wall/through-barrier motion sensing systems are becoming increasingly important tools to find people hidden behind barriers and under rubble. The sensing performance of these systems is best determined with dynamic calibration targets that mimic human breathing and respiration. Potential advantages of these targets are in their reproducibility and accuracy in support of calibration methods for human detection testing in through-wall and through-rubbles situations. Essential ingredients of an ideal calibration target are: (1) its RCS should be as close to that of a human, (2) it must be easy to fabricate and deploy, (3) it must present essentially a constant RCS value at all aspect angles, and (4) it must be durable with respect to laboratory and field test conditions. An ideal calibration target is a sphere. However, we have determined that it is possible to mimic a sphere using a polyhedron with a limited number of faces. We are in the process of constructing an expandable metallic polyhedron target of appropriate size and number of faces for experimental measurements under various through-wall and through-rubble operational scenarios. This paper presents simulation results on the dynamic RCS variations of the calibration target as it expands and contracts to simulate human breathing.

Original languageEnglish (US)
Title of host publicationRadar Sensor Technology XXIII
EditorsKenneth I. Ranney, Armin Doerry
ISBN (Electronic)9781510626713
StatePublished - 2019
EventRadar Sensor Technology XXIII 2019 - Baltimore, United States
Duration: Apr 15 2019Apr 17 2019

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X


ConferenceRadar Sensor Technology XXIII 2019
Country/TerritoryUnited States

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Simulation of the dynamic radar cross section variations of a human emulator calibration target for through-wall and through-rubble radar'. Together they form a unique fingerprint.

Cite this