TY - GEN
T1 - Simulation of the heat treatment of an automotive cast part
AU - Lasne, Patrice
AU - Barbelet, Mickael
AU - Jaouen, Olivier
AU - Costes, Frederic
AU - Ragai, Ihab
AU - Tempelman, Harry
PY - 2010
Y1 - 2010
N2 - In this paper, simulation of the casting and heat treatment processes of front spindle of a rigid dump truck are presented. The objectives are to present how the different operations can be simulated in order to predict the local phases in the different areas of the part. To reach these objectives, two software packages are used in sequenced. The first one, Thercast, is used to simulate the casting operation. The second one, Forge, is applied to the water-quenching simulation. The general formulations used are shortly presented in this paper. The aim of casting simulation is to compute the metal behavior from the liquid state at the pouring stage to the solid state during cooling into the mold. Filling and cooling phases simulations, taking into account the air gap, ensure that no internal defects like shrinkage, porosity, micro porosity or hot tearing are taking place into the part. Forge software allows the water quenching stage simulation. A model is used to deduct the IT diagram (Isothermal Transformation diagram) from the material composition. The initial grain size influences the transformation kinetics. Another main phenomenon is the efficiency of the cooling bath. The results of the simulation (phase distribution, distortion, residual stresses) strongly depend on these input conditions. Thus, the effect of input data variations on final results must be studied. The modeling approach is validated by comparisons with micrographic observations. Another solution to determine the reliability of the models is to observe the local properties in the quenched part. The prediction of the local micro hardness can be used to evaluate the accuracy of the quenching models.
AB - In this paper, simulation of the casting and heat treatment processes of front spindle of a rigid dump truck are presented. The objectives are to present how the different operations can be simulated in order to predict the local phases in the different areas of the part. To reach these objectives, two software packages are used in sequenced. The first one, Thercast, is used to simulate the casting operation. The second one, Forge, is applied to the water-quenching simulation. The general formulations used are shortly presented in this paper. The aim of casting simulation is to compute the metal behavior from the liquid state at the pouring stage to the solid state during cooling into the mold. Filling and cooling phases simulations, taking into account the air gap, ensure that no internal defects like shrinkage, porosity, micro porosity or hot tearing are taking place into the part. Forge software allows the water quenching stage simulation. A model is used to deduct the IT diagram (Isothermal Transformation diagram) from the material composition. The initial grain size influences the transformation kinetics. Another main phenomenon is the efficiency of the cooling bath. The results of the simulation (phase distribution, distortion, residual stresses) strongly depend on these input conditions. Thus, the effect of input data variations on final results must be studied. The modeling approach is validated by comparisons with micrographic observations. Another solution to determine the reliability of the models is to observe the local properties in the quenched part. The prediction of the local micro hardness can be used to evaluate the accuracy of the quenching models.
UR - http://www.scopus.com/inward/record.url?scp=82455220295&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=82455220295&partnerID=8YFLogxK
U2 - 10.1115/MSEC2010-34152
DO - 10.1115/MSEC2010-34152
M3 - Conference contribution
AN - SCOPUS:82455220295
SN - 9780791849477
T3 - ASME 2010 International Manufacturing Science and Engineering Conference, MSEC 2010
SP - 107
EP - 112
BT - ASME 2010 International Manufacturing Science and Engineering Conference, MSEC 2010
T2 - ASME 2010 International Manufacturing Science and Engineering Conference, MSEC 2010
Y2 - 12 October 2010 through 15 October 2010
ER -