TY - GEN
T1 - Simulations of microstructure evolution during friction stir blind riveting using a cellular automaton method
AU - Samanta, Avik
AU - Shen, Ninggang
AU - Ji, Haipeng
AU - Wang, Weiming
AU - Ding, Hongtao
AU - Li, Jingjing
N1 - Publisher Copyright:
©2017 ASME.
PY - 2017
Y1 - 2017
N2 - Friction stir blind riveting (FSBR) is a novel and highly efficient joining technique for lightweight metal materials, such as aluminum alloys. The FSBR process induced large gradients of plastic deformation near the rivet hole surface and resulted in a distinctive gradient microstructure in this domain. In this study, microstructural analysis is conducted to analyze the final microstructure after the FSBR process. Dynamic recrystallization (DRX) is determined as the dominant microstructure evolution mechanism due to the significant heat generation during the process. To better understand the FSBR process, a two-dimensional Cellular Automaton (CA) model is developed to simulate the microstructure evolution near the rivet hole surface by considering the FSBR process loading condition. To model the significant microstructure change near the rivet hole surface, spatial distributed temporal thermal and mechanical loading conditions are applied to simulate the effect of the large gradient plastic deformation near the hole surface. The distribution grain topography and recrystallization fraction are obtained through the simulations, which agree well with the experimental data. This study presents a reliable numerical approach to model and simulate microstructure evolution governed by DRX under the large plastic deformation gradient in FSBR.
AB - Friction stir blind riveting (FSBR) is a novel and highly efficient joining technique for lightweight metal materials, such as aluminum alloys. The FSBR process induced large gradients of plastic deformation near the rivet hole surface and resulted in a distinctive gradient microstructure in this domain. In this study, microstructural analysis is conducted to analyze the final microstructure after the FSBR process. Dynamic recrystallization (DRX) is determined as the dominant microstructure evolution mechanism due to the significant heat generation during the process. To better understand the FSBR process, a two-dimensional Cellular Automaton (CA) model is developed to simulate the microstructure evolution near the rivet hole surface by considering the FSBR process loading condition. To model the significant microstructure change near the rivet hole surface, spatial distributed temporal thermal and mechanical loading conditions are applied to simulate the effect of the large gradient plastic deformation near the hole surface. The distribution grain topography and recrystallization fraction are obtained through the simulations, which agree well with the experimental data. This study presents a reliable numerical approach to model and simulate microstructure evolution governed by DRX under the large plastic deformation gradient in FSBR.
UR - http://www.scopus.com/inward/record.url?scp=85027725283&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027725283&partnerID=8YFLogxK
U2 - 10.1115/MSEC20173034
DO - 10.1115/MSEC20173034
M3 - Conference contribution
AN - SCOPUS:85027725283
T3 - ASME 2017 12th International Manufacturing Science and Engineering Conference, MSEC 2017 collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
BT - Processes
PB - American Society of Mechanical Engineers
T2 - ASME 2017 12th International Manufacturing Science and Engineering Conference, MSEC 2017 collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
Y2 - 4 June 2017 through 8 June 2017
ER -