Skeleton-CutMix: Mixing Up Skeleton With Probabilistic Bone Exchange for Supervised Domain Adaptation

Hanchao Liu, Yuhe Liu, Tai Jiang Mu, Xiaolei Huang, Shi Min Hu

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


We present Skeleton-CutMix, a simple and effective skeleton augmentation framework for supervised domain adaptation and show its advantage in skeleton-based action recognition tasks. Existing approaches usually perform domain adaptation for action recognition with elaborate loss functions that aim to achieve domain alignment. However, they fail to capture the intrinsic characteristics of skeleton representation. Benefiting from the well-defined correspondence between bones of a pair of skeletons, we instead mitigate domain shift by fabricating skeleton data in a mixed domain, which mixes up bones from the source domain and the target domain. The fabricated skeletons in the mixed domain can be used to augment training data and train a more general and robust model for action recognition. Specifically, we hallucinate new skeletons by using pairs of skeletons from the source and target domains; a new skeleton is generated by exchanging some bones from the skeleton in the source domain with corresponding bones from the skeleton in the target domain, which resembles a cut-and-mix operation. When exchanging bones from different domains, we introduce a class-specific bone sampling strategy so that bones that are more important for an action class are exchanged with higher probability when generating augmentation samples for that class. We show experimentally that the simple bone exchange strategy for augmentation is efficient and effective and that distinctive motion features are preserved while mixing both action and style across domains. We validate our method in cross-dataset and cross-age settings on NTU-60 and ETRI-Activity3D datasets with an average gain of over 3% in terms of action recognition accuracy, and demonstrate its superior performance over previous domain adaptation approaches as well as other skeleton augmentation strategies.

Original languageEnglish (US)
Pages (from-to)4046-4058
Number of pages13
JournalIEEE Transactions on Image Processing
StatePublished - 2023

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Graphics and Computer-Aided Design

Cite this