Skeleton matching with applications in severe weather detection

Mohammad Mahdi Kamani, Farshid Farhat, Stephen Wistar, James Z. Wang

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Severe weather conditions cause an enormous amount of damages around the globe. Bow echo patterns in radar images are associated with a number of these destructive conditions such as damaging winds, hail, thunderstorms, and tornadoes. They are detected manually by meteorologists. In this paper, we propose an automatic framework to detect these patterns with high accuracy by introducing novel skeletonization and shape matching approaches. In this framework, first we extract regions with high probability of occurring bow echo from radar images and apply our skeletonization method to extract the skeleton of those regions. Next, we prune these skeletons using our innovative pruning scheme with fuzzy logic. Then, using our proposed shape descriptor, Skeleton Context, we can extract bow echo features from these skeletons in order to use them in shape matching algorithm and classification step. The output of classification indicates whether these regions are bow echo with over 97% accuracy.

Original languageEnglish (US)
Pages (from-to)1154-1166
Number of pages13
JournalApplied Soft Computing Journal
Volume70
DOIs
StatePublished - Sep 2018

All Science Journal Classification (ASJC) codes

  • Software

Fingerprint

Dive into the research topics of 'Skeleton matching with applications in severe weather detection'. Together they form a unique fingerprint.

Cite this