TY - JOUR
T1 - Skin pigmentation and vitamin D-folate interactions in vascular function
T2 - An update
AU - Tony Wolf, S.
AU - Larry Kenney, W.
N1 - Publisher Copyright:
© 2021 Lippincott Williams and Wilkins. All rights reserved.
PY - 2021/11/1
Y1 - 2021/11/1
N2 - Purpose of reviewVitamin D and folate promote vascular endothelial health and may therefore help mitigate the development of cardiovascular disease (CVD). Ultraviolet radiation (UVR) exposure stimulates cutaneous vitamin D synthesis but degrades the bioactive metabolite of folate, 5-methyltetrahydrofolate (5-MTHF). Skin melanin absorbs UVR, thereby modulating the impact of UVR exposure on vitamin D and 5-MTHF metabolism. This review presents recent findings regarding the inter-relations among UVR, skin pigmentation, folate and vitamin D, and endothelial function.Recent findingsEvidence for roles of folic acid or vitamin D supplementation on CVD endpoints is inconsistent, although preclinical and clinical studies have demonstrated the efficacy of both micronutrients for improving endothelial function. Vitamin D deficiency is most prevalent in darkly pigmented individuals living in relatively low-UVR environments. Conversely, there is a negative relation between accumulated UVR exposure and serum folate concentration in lightly pigmented adults. The interactions among UVR and bioavailable folate and vitamin D differentially impact endothelial function in differently pigmented skin.SummaryUVR exposure disparately impacts folate and vitamin D metabolism in differently pigmented skin depending upon regional UVR intensity and seasonality. These findings present new clinical research questions regarding the interactions among UVR, skin pigmentation, folate and vitamin D bioavailability, and endothelial health.
AB - Purpose of reviewVitamin D and folate promote vascular endothelial health and may therefore help mitigate the development of cardiovascular disease (CVD). Ultraviolet radiation (UVR) exposure stimulates cutaneous vitamin D synthesis but degrades the bioactive metabolite of folate, 5-methyltetrahydrofolate (5-MTHF). Skin melanin absorbs UVR, thereby modulating the impact of UVR exposure on vitamin D and 5-MTHF metabolism. This review presents recent findings regarding the inter-relations among UVR, skin pigmentation, folate and vitamin D, and endothelial function.Recent findingsEvidence for roles of folic acid or vitamin D supplementation on CVD endpoints is inconsistent, although preclinical and clinical studies have demonstrated the efficacy of both micronutrients for improving endothelial function. Vitamin D deficiency is most prevalent in darkly pigmented individuals living in relatively low-UVR environments. Conversely, there is a negative relation between accumulated UVR exposure and serum folate concentration in lightly pigmented adults. The interactions among UVR and bioavailable folate and vitamin D differentially impact endothelial function in differently pigmented skin.SummaryUVR exposure disparately impacts folate and vitamin D metabolism in differently pigmented skin depending upon regional UVR intensity and seasonality. These findings present new clinical research questions regarding the interactions among UVR, skin pigmentation, folate and vitamin D bioavailability, and endothelial health.
UR - http://www.scopus.com/inward/record.url?scp=85118283190&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85118283190&partnerID=8YFLogxK
U2 - 10.1097/MCO.0000000000000788
DO - 10.1097/MCO.0000000000000788
M3 - Review article
C2 - 34456246
AN - SCOPUS:85118283190
SN - 1363-1950
VL - 24
SP - 528
EP - 535
JO - Current opinion in clinical nutrition and metabolic care
JF - Current opinion in clinical nutrition and metabolic care
IS - 6
ER -