TY - JOUR
T1 - Sleep deprivation but not a whisker trim increases nerve growth factor within barrel cortical neurons
AU - Brandt, Judith A.
AU - Churchill, Lynn
AU - Guan, Zhiwei
AU - Fang, Jidong
AU - Chen, Lichao
AU - Krueger, James M.
N1 - Funding Information:
This work was supported by grants from the National Institute of Health (NS25378, NS31453, and HD36520 to J.K. and MH60308 to L.C.).
PY - 2001/4/13
Y1 - 2001/4/13
N2 - Sleep is hypothesized to influence activity-driven changes in the brain microcircuitry. A change in the barrel cortex following the removal of the mystacial whiskers in rats is a model for synaptic plasticity. This model was combined with sleep deprivation and immunoreactivity for nerve growth factor (NGF) was determined. Sleep deprivation for 6 h after light onset significantly increased the number of NGF-immunoreactive pyramidal neurons in layer V of the barrel cortex. However, unilateral trimming of mystacial whiskers did not affect NGF immunoreactivity in the contralateral or ipsilateral barrel cortices when rats were allowed to sleep. If the rats received a unilateral whisker cut at light onset, and subsequently were deprived of sleep, increases in the NGF-immunoreactive neurons were only observed in the barrel cortex on the side that received input from the remaining intact whiskers. In contrast, NGF immunoreactivity on the side contralateral to the cut whiskers decreased in sleep-deprived animals to levels below those observed in the control animals that were allowed to sleep. These results suggest that NGF expression is influenced by the interaction of sleep, afferent input and the nature of ongoing synaptic reorganization. Further, results are consistent with the hypothesis that growth factors, such as NGF, form part of the mechanism responsible for sleep regulation and that they also form one facet of sleep-related synaptic plasticity.
AB - Sleep is hypothesized to influence activity-driven changes in the brain microcircuitry. A change in the barrel cortex following the removal of the mystacial whiskers in rats is a model for synaptic plasticity. This model was combined with sleep deprivation and immunoreactivity for nerve growth factor (NGF) was determined. Sleep deprivation for 6 h after light onset significantly increased the number of NGF-immunoreactive pyramidal neurons in layer V of the barrel cortex. However, unilateral trimming of mystacial whiskers did not affect NGF immunoreactivity in the contralateral or ipsilateral barrel cortices when rats were allowed to sleep. If the rats received a unilateral whisker cut at light onset, and subsequently were deprived of sleep, increases in the NGF-immunoreactive neurons were only observed in the barrel cortex on the side that received input from the remaining intact whiskers. In contrast, NGF immunoreactivity on the side contralateral to the cut whiskers decreased in sleep-deprived animals to levels below those observed in the control animals that were allowed to sleep. These results suggest that NGF expression is influenced by the interaction of sleep, afferent input and the nature of ongoing synaptic reorganization. Further, results are consistent with the hypothesis that growth factors, such as NGF, form part of the mechanism responsible for sleep regulation and that they also form one facet of sleep-related synaptic plasticity.
UR - http://www.scopus.com/inward/record.url?scp=0035853492&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035853492&partnerID=8YFLogxK
U2 - 10.1016/S0006-8993(01)02149-7
DO - 10.1016/S0006-8993(01)02149-7
M3 - Article
C2 - 11292453
AN - SCOPUS:0035853492
SN - 0006-8993
VL - 898
SP - 105
EP - 112
JO - Brain research
JF - Brain research
IS - 1
ER -