Slow light at the nanoscale based on active epsilon-near-zero plasmonic waveguides

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Plasmonic waveguides exhibit an effective epsilon-near-zero (ENZ) response at their cut-off frequency. In this work, we demonstrate the formation of an exceptional point (EP) in a nanoscale open and lossy (non-Hermitian) nanophotonic system consisting of an array of periodic nanowaveguides loaded with a very low gain coefficient material. We theoretically analyze the obtained EP, as well as its topological properties, by using a transmission-line model adapted to the plasmonic properties of the proposed device. The dispersion of the active ENZ mode and the group velocity are thoroughly investigated. Reflectionless transmission (perfect loss compensation) and ultraslow group velocity values at the nanoscale are realized at the EP, which coincides with the ENZ cut-off frequency of the proposed plasmonic system. This special spectral degeneracy (EP) is a unique feature of the presented nanoscale symmetric plasmonic ENZ configuration, different from most of the previous works that were mainly focused on asymmetric bulky micron-scale active photonic configurations.

Original languageEnglish (US)
Title of host publication2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, APSURSI 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1303-1304
Number of pages2
ISBN (Electronic)9781728106922
DOIs
StatePublished - Jul 2019
Event2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, APSURSI 2019 - Atlanta, United States
Duration: Jul 7 2019Jul 12 2019

Publication series

Name2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, APSURSI 2019 - Proceedings

Conference

Conference2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, APSURSI 2019
Country/TerritoryUnited States
CityAtlanta
Period7/7/197/12/19

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Signal Processing
  • Instrumentation

Fingerprint

Dive into the research topics of 'Slow light at the nanoscale based on active epsilon-near-zero plasmonic waveguides'. Together they form a unique fingerprint.

Cite this