Abstract
Vibrational resonances of microelectromechanical systems (MEMS) can serve as means for assessing physical properties of ultrathin coatings in sensors and analytical platforms. Most such technologies exist in largely two-dimensional configurations with a limited total number of accessible vibration modes and modal displacements, thereby placing constraints on design options and operational capabilities. This study presents a set of concepts in three-dimensional (3D) microscale platforms with vibrational resonances excited by Lorentz-force actuation for purposes of measuring properties of thin-film coatings. Nanoscale films including photodefinable epoxy, cresol novolak resin, and polymer brush with thicknesses as small as 270 nm serve as the test vehicles for demonstrating the advantages of these 3D MEMS for detection of multiple physical properties, such as modulus and density, within a single polymer sample. The stability and reusability of the structure are demonstrated through multiple measurements of polymer samples using a single platform, and via integration with thermal actuators, the temperature-dependent physical properties of polymer films are assessed. Numerical modeling also suggests the potential for characterization of anisotropic mechanical properties in single or multilayer films. The findings establish unusual opportunities for interrogation of the physical properties of polymers through advanced MEMS design.
Original language | English (US) |
---|---|
Pages (from-to) | 449-457 |
Number of pages | 9 |
Journal | ACS nano |
Volume | 13 |
Issue number | 1 |
DOIs | |
State | Published - Jan 22 2019 |
All Science Journal Classification (ASJC) codes
- General Materials Science
- General Engineering
- General Physics and Astronomy