Abstract
Long gamma-ray bursts (GRBs) are believed to originate from core collapse of massive stars. High-redshift GRBs can probe the star formation and reionization history of the early Universe, but their detection remains rare. Here we report the detection of a GRB triggered in the 0.5–4 keV band by the Wide-field X-ray Telescope (WXT) on board the Einstein Probe (EP) mission, designated as EP240315a, whose bright peak was also detected by the Swift Burst Alert Telescope and Konus-Wind through off-line analyses. At a redshift of z = 4.859, EP240315a showed a much longer and more complicated light curve in the soft-X-ray band than in gamma rays. Benefiting from a large field of view (~3,600°2) and a high sensitivity, EP-WXT captured the earlier engine activation and extended late engine activity through a continuous detection. With a peak X-ray flux at the faint end of previously known high-z GRBs, the detection of EP240315a demonstrates the great potential for EP to study the early universe via GRBs.
Original language | English (US) |
---|---|
Journal | Nature Astronomy |
DOIs | |
State | Accepted/In press - 2025 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics