TY - JOUR
T1 - Soil water repellency index prediction using the molarity of ethanol droplet test
AU - Moody, David R.
AU - Schlossberg, Maxim J.
PY - 2010/11
Y1 - 2010/11
N2 - The profound impact of soil water repellency (WR) on vadose zone processes makes accurate characterization of this phenomenon paramount. Numerous WR measurement techniques exist, each having advantages and disadvantages with regard to laboriousness, resolution, and accuracy. The molarity of ethanol droplet (MED) test quantifies WR as the lowest ethanol concentration permitting droplet penetration within 5 s, or alternatively, the 90° liquid surface tension of the infiltrating droplet (γ ND). This method is simple and rapid but poorly represents soil wetting behavior across measurement intervals. Although time consuming, water/ethanol sorptivity ratio calculation of the repellency index (R) generates a continuous, linear scale of WR that intrinsically isolates the effect of WR on infiltration. This study compared MED and R measurements of sand samples displaying varying degrees of WR. Each technique was performed at 20°C and 1.78 kPa H 2O vapor pressure using duplicate subsamples of oven-dried (55°C) sands. A nonlinear association between R and γ ND or MED was observed. Regressing log 10 R by γ ND revealed a statistically significant model, yet the 95% log 10 R prediction interval included values less than the theoretical lower limit of R. Alternatively, regressing log 10 R by MED generated the following model (P < 0.0001, r 2 = 0.727): log 10 R = 0.705 + 0.5144(MED), capable of predicting R within the operation bounds of R theory. While the predicted R values are distributed across a wide interval, their availability offers cautious users an intuitive scale for enhanced interpretation of more commonly generated MED data.
AB - The profound impact of soil water repellency (WR) on vadose zone processes makes accurate characterization of this phenomenon paramount. Numerous WR measurement techniques exist, each having advantages and disadvantages with regard to laboriousness, resolution, and accuracy. The molarity of ethanol droplet (MED) test quantifies WR as the lowest ethanol concentration permitting droplet penetration within 5 s, or alternatively, the 90° liquid surface tension of the infiltrating droplet (γ ND). This method is simple and rapid but poorly represents soil wetting behavior across measurement intervals. Although time consuming, water/ethanol sorptivity ratio calculation of the repellency index (R) generates a continuous, linear scale of WR that intrinsically isolates the effect of WR on infiltration. This study compared MED and R measurements of sand samples displaying varying degrees of WR. Each technique was performed at 20°C and 1.78 kPa H 2O vapor pressure using duplicate subsamples of oven-dried (55°C) sands. A nonlinear association between R and γ ND or MED was observed. Regressing log 10 R by γ ND revealed a statistically significant model, yet the 95% log 10 R prediction interval included values less than the theoretical lower limit of R. Alternatively, regressing log 10 R by MED generated the following model (P < 0.0001, r 2 = 0.727): log 10 R = 0.705 + 0.5144(MED), capable of predicting R within the operation bounds of R theory. While the predicted R values are distributed across a wide interval, their availability offers cautious users an intuitive scale for enhanced interpretation of more commonly generated MED data.
UR - http://www.scopus.com/inward/record.url?scp=79960174016&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79960174016&partnerID=8YFLogxK
U2 - 10.2136/vzj2009.0119
DO - 10.2136/vzj2009.0119
M3 - Article
AN - SCOPUS:79960174016
SN - 1539-1663
VL - 9
SP - 1046
EP - 1051
JO - Vadose Zone Journal
JF - Vadose Zone Journal
IS - 4
ER -