Solidification processing of functionally graded materials by sedimentation

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

A combined experimental and numerical investigation of the solidification process during gravity casting of functionally graded materials (FGMs) is conducted. Focus is placed on the interplay between the freezing front propagation and particle sedimentation. Experiments were performed in a rectangular ingot using pure substances as the matrix and glass beads as the particle phase. The time evolutions of local particle volume fractions were measured by bifurcated fiber optical probes working in the reflection mode. The effects of various processing parameters were explored. It is found that there exists a particle-free zone in the top portion of the solidified ingot, followed by a graded particle distribution region towards the bottom. Higher superheat results in slower solidification and hence a thicker particle-free zone and a higher particle concentration near the bottom. The higher initial particle volume fraction leads to a thinner particle-free region. Lower cooling temperatures suppress particle settling. A one-dimensional solidification model was also developed, and the model equations were solved numerically using a fixed-grid, finite-volume method. The model was then validated against the experimental results, and the validated computer code was used as a tool for efficient computational prototyping of an Al/SiC FGM.

Original languageEnglish (US)
Title of host publicationAmerican Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD
PublisherASME
Pages289-301
Number of pages13
ISBN (Print)0791816567
StatePublished - 1999
EventHeat Transfer Division - 1999 ((The ASME International Mechanical Engineering Congress and Exposition) - Nashville, TN, USA
Duration: Nov 14 1999Nov 19 1999

Publication series

NameAmerican Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD
Volume364-2
ISSN (Print)0272-5673

Other

OtherHeat Transfer Division - 1999 ((The ASME International Mechanical Engineering Congress and Exposition)
CityNashville, TN, USA
Period11/14/9911/19/99

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Solidification processing of functionally graded materials by sedimentation'. Together they form a unique fingerprint.

Cite this