Abstract
Steady-state and picosecond time-resolved emission experiments are used to examine the excited-state charge transfer reaction of crystal violet lactone (CVL) in aprotic solvents. Solvatochromic analysis using a dielectric continuum model suggests dipole moments of 9 - 12 D for the initially excited (LE) state and ̃24 D for the charge-transfer (CT) state. Intensities of steady-state emission as well as kinetic data provide free energies for the LE → CT reaction that range from +12 kJ/mol in nonpolar solvents to - 10 kJ/mol in highly polar solvents at 25 °C. Reaction rates constants, which lie in the range of 10 - 100 ns- 1 in most solvents, depend on both solvent polarity and solvent friction. In highly polar solvents, rates are correlated to solvation times in a manner that indicates that the reaction is a solvent-controlled electron transfer on an adiabatic potential surface having a modest barrier.
Original language | English (US) |
---|---|
Pages (from-to) | 3746-3754 |
Number of pages | 9 |
Journal | Journal of Physical Chemistry A |
Volume | 115 |
Issue number | 16 |
DOIs | |
State | Published - Apr 28 2011 |
All Science Journal Classification (ASJC) codes
- Physical and Theoretical Chemistry