Abstract
Suppose that X is a smooth, projective threefold over C and that Φ W X ! X is an automorphism of positive entropy. We show that one of the following must hold, after replacing Φ by an iterate: I) the canonical class of X is numerically trivial; ii) Φ is imprimitive; iii) Φ is not dynamically minimal. As a consequence, we show that if a smooth threefold M does not admit a primitive automorphism of positive entropy, then no variety constructed by a sequence of smooth blow- ups of M can admit a primitive automorphism of positive entropy. In explaining why the method does not apply to threefolds with terminal singularities, we exhibit a non-uniruled, terminal threefold X with in nitely many KX-negative extremal rays on NE.X/.
Original language | English (US) |
---|---|
Pages (from-to) | 1507-1547 |
Number of pages | 41 |
Journal | Annales Scientifiques de l'Ecole Normale Superieure |
Volume | 6 |
Issue number | 51 |
DOIs | |
State | Published - Nov 2018 |
All Science Journal Classification (ASJC) codes
- General Mathematics