TY - JOUR

T1 - Some remarks on the integration of the poisson algebra

AU - Banyaga, Augustin

AU - Donato, Paul

N1 - Funding Information:
* Corresponding author. E-mail: donato@gyptis.univ-mrs.fr. Universitt de Provence & CNRS U.R.A. 225. I E-mail: banyaga@math.psu.edu. Partially supported by NSF grant DMS 94-03196.

PY - 1996/8

Y1 - 1996/8

N2 - We prove the integrability of the Poisson algebra of functions with compact supports of a noncompact manifold. We also determine a Lie subalgebra of vector fields which, weakly, integrate the Poisson algebra of a not necessarily compact manifold covered by an exact symplectic manifold.

AB - We prove the integrability of the Poisson algebra of functions with compact supports of a noncompact manifold. We also determine a Lie subalgebra of vector fields which, weakly, integrate the Poisson algebra of a not necessarily compact manifold covered by an exact symplectic manifold.

UR - http://www.scopus.com/inward/record.url?scp=0030211032&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030211032&partnerID=8YFLogxK

U2 - 10.1016/0393-0440(95)00039-9

DO - 10.1016/0393-0440(95)00039-9

M3 - Article

AN - SCOPUS:0030211032

SN - 0393-0440

VL - 19

SP - 368

EP - 378

JO - Journal of Geometry and Physics

JF - Journal of Geometry and Physics

IS - 4

ER -