TY - JOUR
T1 - SP-R210 isoforms of Myosin18A modulate endosomal sorting and recognition of influenza A virus infection in macrophages
AU - Yau, Eric
AU - Yang, Linlin
AU - Chen, Yan
AU - Umstead, Todd M.
AU - Stanley, Anne E.
AU - Halstead, E. Scott
AU - Gandhi, Chintan K.
AU - Yewdell, Jonathan W.
AU - Chroneos, Zissis C.
N1 - Publisher Copyright:
© 2023 The Author(s)
PY - 2024/3/1
Y1 - 2024/3/1
N2 - Influenza A virus (IAV) infection causes acute and often lethal inflammation in the lung. The role of macrophages in this adverse inflammation is partially understood. The surfactant protein A receptor 210 (SP-R210) consists of two isoforms, a long (L) SP-R210L and a short (S) SP-R210S isoform encoded by alternative splicing of the myosin 18A gene. We reported that disruption of SP-R210L enhances cytosolic and endosomal antiviral response pathways. Here, we report that SP-R210L antagonizes type I interferon β (IFNβ), as depletion of SP-R210L potentiates IFNβ secretion. SP-R210 antibodies enhance and attenuate IFNβ secretion in SP-R210L replete and deficient macrophages, respectively, indicating that SP-R210 isoform stoichiometry alters macrophage function intrinsically. This reciprocal response is coupled to unopposed and restricted expression of viral genes in control and SP-R210L-deficient macrophages, respectively. Human monocytic cells with sub-stoichiometric expression of SP-R210L resist IAV infection, whereas alveolar macrophages with increased abundance of SP-R210L permit viral gene expression similar to murine macrophages. Uptake and membrane binding studies show that lack of SP-R210 isoforms does not impair IAV binding and internalization. Lack of SP-R210L, however, results in macropinocytic retention of the virus that depends on both SP-R210S and interferon-inducible transmembrane protein-3 (IFITM3). Mass spectrometry and Western blot analyses indicate that SP-R210 isoforms modulate differential recruitment of the Rho-family GTPase RAC1 and guanine nucleotide exchange factors. Our study suggests that SP-R210 isoforms modulate RAC-dependent macropinosomal sorting of IAV to discrete endosomal and lysosomal compartments that either permit or prevent endolysosomal escape and inflammatory sensing of viral genomes in macrophages.
AB - Influenza A virus (IAV) infection causes acute and often lethal inflammation in the lung. The role of macrophages in this adverse inflammation is partially understood. The surfactant protein A receptor 210 (SP-R210) consists of two isoforms, a long (L) SP-R210L and a short (S) SP-R210S isoform encoded by alternative splicing of the myosin 18A gene. We reported that disruption of SP-R210L enhances cytosolic and endosomal antiviral response pathways. Here, we report that SP-R210L antagonizes type I interferon β (IFNβ), as depletion of SP-R210L potentiates IFNβ secretion. SP-R210 antibodies enhance and attenuate IFNβ secretion in SP-R210L replete and deficient macrophages, respectively, indicating that SP-R210 isoform stoichiometry alters macrophage function intrinsically. This reciprocal response is coupled to unopposed and restricted expression of viral genes in control and SP-R210L-deficient macrophages, respectively. Human monocytic cells with sub-stoichiometric expression of SP-R210L resist IAV infection, whereas alveolar macrophages with increased abundance of SP-R210L permit viral gene expression similar to murine macrophages. Uptake and membrane binding studies show that lack of SP-R210 isoforms does not impair IAV binding and internalization. Lack of SP-R210L, however, results in macropinocytic retention of the virus that depends on both SP-R210S and interferon-inducible transmembrane protein-3 (IFITM3). Mass spectrometry and Western blot analyses indicate that SP-R210 isoforms modulate differential recruitment of the Rho-family GTPase RAC1 and guanine nucleotide exchange factors. Our study suggests that SP-R210 isoforms modulate RAC-dependent macropinosomal sorting of IAV to discrete endosomal and lysosomal compartments that either permit or prevent endolysosomal escape and inflammatory sensing of viral genomes in macrophages.
UR - http://www.scopus.com/inward/record.url?scp=85181234703&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85181234703&partnerID=8YFLogxK
U2 - 10.1016/j.micinf.2023.105280
DO - 10.1016/j.micinf.2023.105280
M3 - Article
C2 - 38135024
AN - SCOPUS:85181234703
SN - 1286-4579
VL - 26
JO - Microbes and Infection
JF - Microbes and Infection
IS - 3
M1 - 105280
ER -