SPARC: Structural properties associated with residue constraints

Andrew F. Neuwald, Hui Yang, B. Tracy Nixon

Research output: Contribution to journalArticlepeer-review

Abstract

SPARC facilitates the generation of plausible hypotheses regarding underlying biochemical mechanisms by structurally characterizing protein sequence constraints. Such constraints appear as residues co-conserved in functionally related subgroups, as subtle pairwise correlations (i.e., direct couplings), and as correlations among these sequence features or with structural features. SPARC performs three types of analyses. First, based on pairwise sequence correlations, it estimates the biological relevance of alternative conformations and of homomeric contacts, as illustrated here for death domains. Second, it estimates the statistical significance of the correspondence between directly coupled residue pairs and interactions at heterodimeric interfaces. Third, given molecular dynamics simulated structures, it characterizes interactions among constrained residues or between such residues and ligands that: (a) are stably maintained during the simulation; (b) undergo correlated formation and/or disruption of interactions with other constrained residues; or (c) switch between alternative interactions. We illustrate this for two homohexameric complexes: the bacterial enhancer binding protein (bEBP) NtrC1, which activates transcription by remodeling RNA polymerase (RNAP) containing σ54, and for DnaB helicase, which opens DNA at the bacterial replication fork. Based on the NtrC1 analysis, we hypothesize possible mechanisms for inhibiting ATP hydrolysis until ADP is released from an adjacent subunit and for coupling ATP hydrolysis to restructuring of σ54 binding loops. Based on the DnaB analysis, we hypothesize that DnaB ‘grabs’ ssDNA by flipping every fourth base and inserting it into cavities between subunits and that flipping of a DnaB-specific glutamine residue triggers ATP hydrolysis.

Original languageEnglish (US)
Pages (from-to)1702-1715
Number of pages14
JournalComputational and Structural Biotechnology Journal
Volume20
DOIs
StatePublished - Jan 2022

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Biophysics
  • Structural Biology
  • Biochemistry
  • Genetics
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'SPARC: Structural properties associated with residue constraints'. Together they form a unique fingerprint.

Cite this