TY - JOUR
T1 - Spatial modeling of exposure of mangrove ecosystems to multiple environmental hazards
AU - Mafi-Gholami, Davood
AU - Jaafari, Abolfazl
AU - Zenner, Eric K.
AU - Nouri Kamari, Akram
AU - Tien Bui, Dieu
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/10/20
Y1 - 2020/10/20
N2 - Determining the level of ecosystems exposure to multiple environmental hazards or risk factors is of paramount importance for developing, adopting, and planning management strategies to minimize the harmful effects of these hazards. We quantified the level of exposure of mangroves on the northern coasts of the Persian Gulf (PG) and the Gulf of Oman (GO) between 1986 and 2019 to eight environmental hazards, i.e., drought, maximum temperatures, rising sea levels, change of freshwater inflows to coasts, extreme storm surges, significant wave height (SWH), seaward edge retreat in the mangroves, and fishery intensity. Based on expert opinion, fuzzy weights were used to integrate these exposures into a single index (EI) for the region. Experts gave the greatest weight/importance to the risks posed by sea-level rise and seaward retreat of mangroves and the lowest risk to significant wave height and fishery intensity in coastal waters. The overall EI and six of eight individual variables (except fishery intensity and maximum temperatures) pointed to exposure levels of mangroves that increased from the coasts of the PG (EI 0.69) to the GO (EI 6.69). Since these hazards are expected to continue in the future, local/regional management responses should focus on minimizing regional anthropogenic threats and halt conversion of natural areas to agricultural and open areas to maintain freshwater inputs to coastal areas, particularly on the GO. Further, uplands that may serve as future refugia into which mangroves may expand over time as sea levels continue to rise should be protected from development. This was the first study that used an analytic framework to compute a mangrove exposure index to a suite of physical and socio-economic hazards across a region. This framework may provide insights into cost-effective resilience-based design and management of socio-ecologically coupled ecosystems in an era of increasing types and intensities of environmental hazards.
AB - Determining the level of ecosystems exposure to multiple environmental hazards or risk factors is of paramount importance for developing, adopting, and planning management strategies to minimize the harmful effects of these hazards. We quantified the level of exposure of mangroves on the northern coasts of the Persian Gulf (PG) and the Gulf of Oman (GO) between 1986 and 2019 to eight environmental hazards, i.e., drought, maximum temperatures, rising sea levels, change of freshwater inflows to coasts, extreme storm surges, significant wave height (SWH), seaward edge retreat in the mangroves, and fishery intensity. Based on expert opinion, fuzzy weights were used to integrate these exposures into a single index (EI) for the region. Experts gave the greatest weight/importance to the risks posed by sea-level rise and seaward retreat of mangroves and the lowest risk to significant wave height and fishery intensity in coastal waters. The overall EI and six of eight individual variables (except fishery intensity and maximum temperatures) pointed to exposure levels of mangroves that increased from the coasts of the PG (EI 0.69) to the GO (EI 6.69). Since these hazards are expected to continue in the future, local/regional management responses should focus on minimizing regional anthropogenic threats and halt conversion of natural areas to agricultural and open areas to maintain freshwater inputs to coastal areas, particularly on the GO. Further, uplands that may serve as future refugia into which mangroves may expand over time as sea levels continue to rise should be protected from development. This was the first study that used an analytic framework to compute a mangrove exposure index to a suite of physical and socio-economic hazards across a region. This framework may provide insights into cost-effective resilience-based design and management of socio-ecologically coupled ecosystems in an era of increasing types and intensities of environmental hazards.
UR - http://www.scopus.com/inward/record.url?scp=85086641901&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85086641901&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2020.140167
DO - 10.1016/j.scitotenv.2020.140167
M3 - Article
C2 - 32569915
AN - SCOPUS:85086641901
SN - 0048-9697
VL - 740
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 140167
ER -