TY - JOUR
T1 - Spatial scaling of gregarious host populations and nonlinearities in infectious disease transmission
AU - Cattadori, Isabella M.
N1 - Publisher Copyright:
© 2022 British Ecological Society.
PY - 2022/5
Y1 - 2022/5
N2 - Research Highlight: Lunn, T. J., Peel, A. J., Eby, P., Brooks, R., Plowright, R. K., Kessler, M. K., & McCallum, H. (2021). Counterintuitive scaling between population abundance and local density: Implications for modelling transmission of infectious diseases in bat populations. Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.13634. Quantifying the transmission of an infectious disease is often difficult and for natural animal systems it can be a major challenge. Animals move over time and space changing their degree of aggregation and rate of contact, which, in turn, affects the risk of infection and the onward spread of the pathogen. Capturing the fundamentals of these processes requires the identification of both the correct spatial scale at which the processes take place and what constitutes a meaningful host population unit. Lunn et al. collected data on the gregarious Pteropus (flying foxes) bats from roost sites in Australia and investigated whether total bat abundance at the roost level, the spatial scale commonly used to model pathogen spread in bat populations, was representative of bat measurements at the tree level, the scale at which pathogen transmission between bats most likely occurs. Their findings showed that bat population measurements at the sub-plot level were strong predictors for potential transmission at the tree scale, while roost-level measurements were less robust. This study suggests that bat abundance at roost is inadequate to capture the gregarious structure of bat populations and the fundamental processes of transmission at lower scale.
AB - Research Highlight: Lunn, T. J., Peel, A. J., Eby, P., Brooks, R., Plowright, R. K., Kessler, M. K., & McCallum, H. (2021). Counterintuitive scaling between population abundance and local density: Implications for modelling transmission of infectious diseases in bat populations. Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.13634. Quantifying the transmission of an infectious disease is often difficult and for natural animal systems it can be a major challenge. Animals move over time and space changing their degree of aggregation and rate of contact, which, in turn, affects the risk of infection and the onward spread of the pathogen. Capturing the fundamentals of these processes requires the identification of both the correct spatial scale at which the processes take place and what constitutes a meaningful host population unit. Lunn et al. collected data on the gregarious Pteropus (flying foxes) bats from roost sites in Australia and investigated whether total bat abundance at the roost level, the spatial scale commonly used to model pathogen spread in bat populations, was representative of bat measurements at the tree level, the scale at which pathogen transmission between bats most likely occurs. Their findings showed that bat population measurements at the sub-plot level were strong predictors for potential transmission at the tree scale, while roost-level measurements were less robust. This study suggests that bat abundance at roost is inadequate to capture the gregarious structure of bat populations and the fundamental processes of transmission at lower scale.
UR - http://www.scopus.com/inward/record.url?scp=85129410644&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85129410644&partnerID=8YFLogxK
U2 - 10.1111/1365-2656.13672
DO - 10.1111/1365-2656.13672
M3 - Article
C2 - 35509202
AN - SCOPUS:85129410644
SN - 0021-8790
VL - 91
SP - 912
EP - 915
JO - Journal of Animal Ecology
JF - Journal of Animal Ecology
IS - 5
ER -