Abstract
The dependence of temporal correlations in the power output of wind-turbine pairs on atmospheric stability is explored using theoretical arguments and wind-farm large-eddy simulations. For this purpose, a range of five distinct stability regimes, ranging from weakly stable to moderately convective, were investigated with the same aligned wind-farm layout used among simulations. The coherence spectrum between turbine pairs in each simulation was compared to theoretical predictions. We found with high statistical significance (p < 0.01) that higher levels of atmospheric instability lead to higher coherence between turbines, with wake motions reducing correlations up to 40%. This is attributed to higher dominance of atmospheric motions over wakes in strongly unstable flows. Good agreement resulted with the use of an empirical model for wake-added turbulence to predict the variation of turbine power coherence with ambient turbulence intensity (R2 = 0.82), though other empirical relations may be applicable. It was shown that improperly accounting for turbine-turbine correlations can substantially impact power variance estimates on the order of a factor of 4.
Original language | English (US) |
---|---|
Article number | 1486 |
Journal | Energies |
Volume | 12 |
Issue number | 8 |
DOIs | |
State | Published - Apr 19 2019 |
All Science Journal Classification (ASJC) codes
- Control and Optimization
- Energy (miscellaneous)
- Engineering (miscellaneous)
- Energy Engineering and Power Technology
- Electrical and Electronic Engineering
- Fuel Technology
- Renewable Energy, Sustainability and the Environment