TY - JOUR
T1 - Spatiotemporal Modeling and Parametric Estimation of Isothermal CO2 Adsorption Columns
AU - Babaei Pourkargar, Davood
AU - Kamali Shahri, Seyed Mehdi
AU - Rioux, Robert M.
AU - Armaou, Antonios
N1 - Funding Information:
Financial support from the National Science Foundation, CMMI Award No. 13-00322 and Penn State Institutes of Energy and the Environment are gratefully acknowledged. S.M.K.S. and R.M.R. gratefully acknowledge McMahan Gray and James Hoffman from National Energy Technology Laboratory for donation of the aminosilica material.
PY - 2016/6/8
Y1 - 2016/6/8
N2 - This paper focuses on the development of a rigorous model for isothermal CO2 adsorption columns which describes the spatiotemporal dynamics of CO2 concentrations in the bulk and solid bed by a set of partial and location-varying ordinary differential equations. By considering both dispersion and convection phenomena, the model provides the spatiotemporal behavior of the adsorption rate and circumvents the unphysical simplifying assumptions of linear driving force and uniform adsorption rates through the column length invoked in previous modeling efforts. The proposed model is then employed to compute physical quantities originating from material conservation laws such as the adsorption rate constant and CO2 adsorption capacity from a set of experimental data without using empirical parameter assumptions invoked in previous research. The spatiotemporal dynamics of CO2 adsorption in an aminosilica packed bed are successfully predicted by the proposed model. The adsorption rate constant and capacity of the bed are then identified using a set of experimental CO2 concentration measurements at the adsorption column outlet by solving a dynamic optimization problem using a shooting method formulation. Finally, the adsorption enthalpy is computed by employing the heat of adsorption data to validate the estimated parameters of the system.
AB - This paper focuses on the development of a rigorous model for isothermal CO2 adsorption columns which describes the spatiotemporal dynamics of CO2 concentrations in the bulk and solid bed by a set of partial and location-varying ordinary differential equations. By considering both dispersion and convection phenomena, the model provides the spatiotemporal behavior of the adsorption rate and circumvents the unphysical simplifying assumptions of linear driving force and uniform adsorption rates through the column length invoked in previous modeling efforts. The proposed model is then employed to compute physical quantities originating from material conservation laws such as the adsorption rate constant and CO2 adsorption capacity from a set of experimental data without using empirical parameter assumptions invoked in previous research. The spatiotemporal dynamics of CO2 adsorption in an aminosilica packed bed are successfully predicted by the proposed model. The adsorption rate constant and capacity of the bed are then identified using a set of experimental CO2 concentration measurements at the adsorption column outlet by solving a dynamic optimization problem using a shooting method formulation. Finally, the adsorption enthalpy is computed by employing the heat of adsorption data to validate the estimated parameters of the system.
UR - http://www.scopus.com/inward/record.url?scp=84974623319&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84974623319&partnerID=8YFLogxK
U2 - 10.1021/acs.iecr.6b00477
DO - 10.1021/acs.iecr.6b00477
M3 - Article
AN - SCOPUS:84974623319
SN - 0888-5885
VL - 55
SP - 6443
EP - 6453
JO - Industrial and Engineering Chemistry Research
JF - Industrial and Engineering Chemistry Research
IS - 22
ER -