Spatiotemporal responses of rice root architecture and anatomy to drought

Jenna E. Fonta, Jitender Giri, Phanchita Vejchasarn, Jonathan P. Lynch, Kathleen M. Brown

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Aims: Growth reductions and yield losses from drought could be mitigated by developing rice genotypes with more efficient root systems. We examined spatiotemporal responses to drought in order to determine whether roots developing in upper vs. deeper soil layers respond differently to drought stress. Methods: Root anatomical and architectural phenotypes of two rice genotypes, Azucena (drought tolerant) and IR64 (drought susceptible), were measured weekly in well-watered and vegetative-stage drought stress treatments in solid medium with stratified moisture availability. Basal and apical segments were collected from older, deeper nodal roots and apical segments from younger, shallow roots for assessment of anatomy and lateral rooting phenotypes. The relationship between root anatomy and root respiration rates was tested in solution culture and solid medium. Results: Compared to IR64, Azucena had deeper root systems and larger diameter roots in both treatments but reduced its living tissue area in response to drought, while IR64 roots exhibited less plasticity in root diameter. Root respiration rates were positively correlated with root diameter and living tissue area, providing evidence that root anatomy affects the metabolic cost of tissues. In response to drought, Azucena showed reduced theoretical axial hydraulic conductance in shallow roots and at the base of deep roots but slightly greater conductance at the tip of deep roots, while IR64 displayed low plasticity in metaxylem phenotypes. Conclusion: We propose that the plasticity of root phenotypes in Azucena contributes to its drought tolerance by reducing the metabolic cost of soil exploration and improving the efficiency of water transport.

Original languageEnglish (US)
Pages (from-to)443-464
Number of pages22
JournalPlant and Soil
Volume479
Issue number1-2
DOIs
StatePublished - Oct 2022

All Science Journal Classification (ASJC) codes

  • Soil Science
  • Plant Science

Fingerprint

Dive into the research topics of 'Spatiotemporal responses of rice root architecture and anatomy to drought'. Together they form a unique fingerprint.

Cite this