Abstract
This study characterizes the Doppler signal from simulated microemboli of various sizes in blood mimicking fluid using spectral energy parameters. The goal of this research is to detect microemboli as a non-invasive diagnostic tool, or intra-operatively as a surgical aid. A dual beam diffraction-grating ultrasound probe operating at 10 MHz (Model Echoflow BVM-1, EchoCath, Inc., Princeton, NJ) was used with a flow phantom. Microemboli were polystyrene microspheres in 200 to 1000 micron diameters, in concentrations of 0.1, 0.5, and 1.0 per ml. Average flow velocities were 25, 50, 75, and 100 cm/sec. The distribution of peak values of the power spectrum at 2.5 msec windows was plotted over 15 seconds. The means of the distributions corresponding to the microspheres and background fluid were averaged for the four velocity conditions. Embolic peak spectral power ranged from approximately 12 to 25 dB relative to the background. A detection method based on these measurements is currently being developed.
Original language | English (US) |
---|---|
Pages (from-to) | 471-479 |
Number of pages | 9 |
Journal | Proceedings of SPIE - The International Society for Optical Engineering |
Volume | 5035 |
DOIs | |
State | Published - 2003 |
Event | Medical Imaging 2003: Ultrasonic Imaging and Signal Processing - San Diego, CA, United States Duration: Feb 18 2003 → Feb 20 2003 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Computer Science Applications
- Applied Mathematics
- Electrical and Electronic Engineering