Speed Trajectory Optimization for a Heavy-Duty Truck Traversing Multiple Signalized Intersections: A Dynamic Programming Study

Manuel Rodriguez, Hosam Fathy

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

Abstract

This paper explores the fuel savings that can be achieved by optimizing the speed trajectory of a heavy-duty truck traversing a sequence of intersections, under the assumptions that the behavior of the leading traffic and the timing of the traffic lights is known. Specifically, we look at the impact of corridor topology (i.e. green cycle lengths, phase offsets) on the expected fuel savings of the optimized trajectories. This is an important area of research because vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) technology has the potential to allow autonomous vehicles to reduce fuel consumption, especially in urban and sub-urban driving scenarios. The literature tackles the problem of arterial corridor trajectory optimization, and shows the potential fuel saving benefits. However, previous research focuses primarily on passenger vehicles, and often limits its findings to specific case studies. The main contribution of this paper is to offer an estimate of the fuel saving potential - for heavy-duty trucks and under different corridor characteristics - of optimizing trajectories in an urban arterial with V2V and V21 capabilities.

Original languageEnglish (US)
Title of host publication2018 IEEE Conference on Control Technology and Applications, CCTA 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1454-1459
Number of pages6
ISBN (Electronic)9781538676981
DOIs
StatePublished - Oct 26 2018
Event2nd IEEE Conference on Control Technology and Applications, CCTA 2018 - Copenhagen, Denmark
Duration: Aug 21 2018Aug 24 2018

Publication series

Name2018 IEEE Conference on Control Technology and Applications, CCTA 2018

Other

Other2nd IEEE Conference on Control Technology and Applications, CCTA 2018
Country/TerritoryDenmark
CityCopenhagen
Period8/21/188/24/18

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Control and Optimization
  • Automotive Engineering
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'Speed Trajectory Optimization for a Heavy-Duty Truck Traversing Multiple Signalized Intersections: A Dynamic Programming Study'. Together they form a unique fingerprint.

Cite this