TY - JOUR
T1 - Sphingoid base 1-phosphate phosphatase
T2 - A key regulator of sphingolipid metabolism and stress response
AU - Mandala, Suzanne M.
AU - Thornton, Rosemary
AU - Tu, Zhenxing
AU - Kurtz, Myra B.
AU - Nickels, Joseph
AU - Broach, James
AU - Menzeleev, Ramil
AU - Spiegel, Sarah
PY - 1998/1/6
Y1 - 1998/1/6
N2 - The sphingolipid metabolites ceramide and sphingosine-1-phosphate are second messengers with opposing roles in mammalian cell growth arrest and survival; their relative cellular level has been proposed to be a rheostat that determines the fate of cells. This report demonstrates that this rheostat is an evolutionarily conserved stress-regulatory mechanism that influences growth and survival of yeast. Although the role of sphingosine-1- phosphate in yeast was not previously examined, accumulation of ceramide has been shown to induce G1 arrest and cell death. We now have identified a gene in Saccharomyces cerevisiae, LBP1, that regulates the levels of phosphorylated sphingoid bases and ceramide. LBP1 was cloned from a yeast mutant that accumulated phosphorylated long-chain sphingoid bases and diverted sphingoid base intermediates from sphingolipid pathways to glycerophospholipid biosynthesis. LBP1 and its homolog, LBP2, encode very hydrophobic proteins that contain a novel-conserved sequence motif for lipid phosphatases, and both have long-chain sphingoid base phosphate phosphatase activity. In vitro characterization of Lbp1p shows that this phosphatase is Mg2+-independent with high specificity for phosphorylated long-chain bases, phytosphingosine and sphingosine. The deletion of LBP1 results in the accumulation of phosphorylated long-chain sphingoid bases and reduced ceramide levels. Moreover, deletion of LBP1 and LBP2 results in dramatically enhanced survival upon severe heat shock. Thus, these phosphatases play a previously unappreciated role in regulating ceramide and phosphorylated sphingoid base levels in yeast, and they modulate stress responses through sphingolipid metabolites in a manner that is reminiscent of their effects on mammalian cells.
AB - The sphingolipid metabolites ceramide and sphingosine-1-phosphate are second messengers with opposing roles in mammalian cell growth arrest and survival; their relative cellular level has been proposed to be a rheostat that determines the fate of cells. This report demonstrates that this rheostat is an evolutionarily conserved stress-regulatory mechanism that influences growth and survival of yeast. Although the role of sphingosine-1- phosphate in yeast was not previously examined, accumulation of ceramide has been shown to induce G1 arrest and cell death. We now have identified a gene in Saccharomyces cerevisiae, LBP1, that regulates the levels of phosphorylated sphingoid bases and ceramide. LBP1 was cloned from a yeast mutant that accumulated phosphorylated long-chain sphingoid bases and diverted sphingoid base intermediates from sphingolipid pathways to glycerophospholipid biosynthesis. LBP1 and its homolog, LBP2, encode very hydrophobic proteins that contain a novel-conserved sequence motif for lipid phosphatases, and both have long-chain sphingoid base phosphate phosphatase activity. In vitro characterization of Lbp1p shows that this phosphatase is Mg2+-independent with high specificity for phosphorylated long-chain bases, phytosphingosine and sphingosine. The deletion of LBP1 results in the accumulation of phosphorylated long-chain sphingoid bases and reduced ceramide levels. Moreover, deletion of LBP1 and LBP2 results in dramatically enhanced survival upon severe heat shock. Thus, these phosphatases play a previously unappreciated role in regulating ceramide and phosphorylated sphingoid base levels in yeast, and they modulate stress responses through sphingolipid metabolites in a manner that is reminiscent of their effects on mammalian cells.
UR - http://www.scopus.com/inward/record.url?scp=0031892088&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031892088&partnerID=8YFLogxK
U2 - 10.1073/pnas.95.1.150
DO - 10.1073/pnas.95.1.150
M3 - Article
C2 - 9419344
AN - SCOPUS:0031892088
SN - 0027-8424
VL - 95
SP - 150
EP - 155
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 1
ER -