Spontaneous polarization and cell guidance on asymmetric nanotopography

Corey Herr, Benjamin Winkler, Falko Ziebert, Igor S. Aranson, John T. Fourkas, Wolfgang Losert

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Asymmetric nanotopography with sub-cellular dimensions has recently demonstrated the ability to provide a unidirectional bias in cell migration. The details of this guidance depend on the type of cell studied and the design of the nanotopography. This behavior is not yet well understood, so there is a need for a predictive description of cell migration on such nanotopography that captures both the initiation of migration, and the way cell migration evolves. Here, we employ a three-dimensional, physics-based model to study cell guidance on asymmetric nanosawteeth. In agreement with experimental data, our model predicts that asymmetric sawteeth lead to spontaneous motion. Our model demonstrates that the nanosawteeth induce a unidirectional bias in guidance direction that is dependent upon actin polymerization rate and sawtooth dimensions. Motivated by this model, an analysis of previously reported experimental data indicates that the degree of guidance by asymmetric nanosawteeth increases with the cell velocity.

Original languageEnglish (US)
Article number114
JournalCommunications Physics
Volume5
Issue number1
DOIs
StatePublished - Dec 2022

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Spontaneous polarization and cell guidance on asymmetric nanotopography'. Together they form a unique fingerprint.

Cite this