Spontaneous self-assembly of silica nanocages into inorganic framework materials

N. Ning, F. Calvo, A. C.T. Van Duin, D. J. Wales, H. Vach

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

The possibility of the formation of different silica nanostructures based on fully coordinated spheroidal nanocages (SiO 2) 24 is theoretically investigated using a pairwise potential and the ReaxFF SiO reactive force field. Molecular dynamics simulations at T = 300 K predict that while these nanocages are thermally stable, they spontaneously undergo dimerization upon contact by forming two siloxane bridges. The corresponding reaction pathways obtained with both methods are quantitatively confirmed by electronic structure calculations performed at the Hartree-Fock and density functional theory levels. The barrierless dimerization of silica nanocages is the first step of subsequent polymerizations into strongly bound inorganic materials. Routes to polymerization and possible applications are discussed.

Original languageEnglish (US)
Pages (from-to)518-523
Number of pages6
JournalJournal of Physical Chemistry C
Volume113
Issue number2
DOIs
StatePublished - Jan 15 2009

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • General Energy
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Spontaneous self-assembly of silica nanocages into inorganic framework materials'. Together they form a unique fingerprint.

Cite this