TY - GEN
T1 - Springback analysis in bilayer material bending
AU - Nikhare, Chetan P.
PY - 2017/1/1
Y1 - 2017/1/1
N2 - Exponential increase in the use of auto vehicles, and thus the fuel consumption, which relates to the air pollution, vehicle industry are in a strict environmental regulation from government. Due to which the innovation related to lightweighting is not only an option anymore but became a mandatory necessity to decrease the fuel consumption. To achieve this target, industry has been looking in fabricating components from high strength to ultra-high strength steels. With the usage of these material the lightweight was achieved by reducing a gage thickness. However due to their high strength property often challenges occurred are higher machine tonnage requirement, sudden fracture, geometric defect, etc. The geometric defect comes from elastic recovery of a material, which is also known as a springback. Springback is commonly known as a manufacturing defect due to the geometric error in the part, which would not be able to fit in the assembly without secondary operation or compensation in the forming process. Due to these many challenges, other research route involved is composite material, where light materials can be used with high strength material to reduce the overall vehicle weight. This generally includes, tailor welded blanks, multi-layer material, mechanical joining of dissimilar material, etc. Due to the substantial use of dissimilar materials, these parts are also called as hybrid components. It was noted that the part weight decreases with the use of hybrid components without compromising the integrity and safety. In this paper, a springback analysis was performed considering bilayer metal. For this two dissimilar materials aluminum and composite was considered as bonded material. This material was then bent in a channel forming set-up. The bilayer springback was compared in different condition like aluminum layer on punch side and then on die side. These results were then compared with the baseline springback of only aluminum thin and thick layer. It was found that the layer, which sees the punch side, matters due to the differences in elastic properties for both material and thus it directly influences the springback.
AB - Exponential increase in the use of auto vehicles, and thus the fuel consumption, which relates to the air pollution, vehicle industry are in a strict environmental regulation from government. Due to which the innovation related to lightweighting is not only an option anymore but became a mandatory necessity to decrease the fuel consumption. To achieve this target, industry has been looking in fabricating components from high strength to ultra-high strength steels. With the usage of these material the lightweight was achieved by reducing a gage thickness. However due to their high strength property often challenges occurred are higher machine tonnage requirement, sudden fracture, geometric defect, etc. The geometric defect comes from elastic recovery of a material, which is also known as a springback. Springback is commonly known as a manufacturing defect due to the geometric error in the part, which would not be able to fit in the assembly without secondary operation or compensation in the forming process. Due to these many challenges, other research route involved is composite material, where light materials can be used with high strength material to reduce the overall vehicle weight. This generally includes, tailor welded blanks, multi-layer material, mechanical joining of dissimilar material, etc. Due to the substantial use of dissimilar materials, these parts are also called as hybrid components. It was noted that the part weight decreases with the use of hybrid components without compromising the integrity and safety. In this paper, a springback analysis was performed considering bilayer metal. For this two dissimilar materials aluminum and composite was considered as bonded material. This material was then bent in a channel forming set-up. The bilayer springback was compared in different condition like aluminum layer on punch side and then on die side. These results were then compared with the baseline springback of only aluminum thin and thick layer. It was found that the layer, which sees the punch side, matters due to the differences in elastic properties for both material and thus it directly influences the springback.
UR - http://www.scopus.com/inward/record.url?scp=85040949804&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85040949804&partnerID=8YFLogxK
U2 - 10.1115/IMECE2017-70549
DO - 10.1115/IMECE2017-70549
M3 - Conference contribution
AN - SCOPUS:85040949804
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Advanced Manufacturing
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017
Y2 - 3 November 2017 through 9 November 2017
ER -