Stability and charge transfer levels of extrinsic defects in LiNbO 3

Haixuan Xu, Aleksandr Chernatynskiy, Donghwa Lee, Susan B. Sinnott, Venkatraman Gopalan, Volkmar Dierolf, Simon R. Phillpot

Research output: Contribution to journalArticlepeer-review

42 Scopus citations


The technologically important incorporation of extrinsic defects (Mg 2+, Fe2+, Fe3+, Er3+, and Nd 3+) in LiNbO3 is investigated using density-functional theory combined with thermodynamic calculations. Defect energies, the charge compensation mechanisms, and charge transfer levels, are determined for congruent and stoichiometric compositions. In general, under congruent (Nb 2 O5 -rich) conditions impurities occupy lithium sites, compensated by lithium vacancies. Under stoichiometric (Li2 O -rich) conditions, impurities occupy both lithium and niobium sites. The effects of the concentration of Mg on the dominant defect and site occupancy are analyzed. In addition, the thermal ionization energy and relative defect stability order for Fe2+ and Fe3+ are evaluated. The charge transfer levels of impurities with regard to the band structure, and their influences on the optical properties of the material are elucidated.

Original languageEnglish (US)
Article number184109
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number18
StatePublished - Nov 15 2010

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Stability and charge transfer levels of extrinsic defects in LiNbO 3'. Together they form a unique fingerprint.

Cite this