Abstract
The method of normal modes is used to examine the stability of an azimuthal base flow to both axisymmetric and plane-polar disturbances for an electrically conducting fluid confined between stationary, concentric, infinitely-long cylinders. An electric potential difference exists between the two cylinder walls and drives a radial electric current. Without a magnetic field, this flow remains stationary. However, if an axial magnetic field is applied, then the interaction between the radial electric current and the magnetic field gives rise to an azimuthal electromagnetic body force which drives an azimuthal velocity. Infinitesimal axisymmetric disturbances lead to an instability in the base flow. Infinitesimal plane-polar disturbances do not appear to destabilize the base flow until shear-flow transition to turbulence.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 31-42 |
| Number of pages | 12 |
| Journal | Journal of Fluids Engineering, Transactions of the ASME |
| Volume | 123 |
| Issue number | 1 |
| DOIs | |
| State | Published - Mar 2001 |
All Science Journal Classification (ASJC) codes
- Mechanical Engineering