Abstract
Density functional theory is used to determine the stabilization mechanisms of LaFeO3 (010) surfaces over a range of surface oxygen stoichiometries. For the stoichiometric LaO surface, and for reduced surface terminations, an electron-rich surface is needed for stabilization. By contrast, in the case of the stoichiometric FeO2 surface and oxidized surface terminations with low-coordinated oxygen atoms, a hole-rich surface is needed for stabilization. The calculations further predict that low coordinated oxygen atoms are more stable on LaO-type surface terminations than on FeO 2-type surface terminations due to relatively strong electron transfer. In addition to these electronic effects, atomic relaxation is found to be an important contributor to charge compensation, with LaO-type surface terminations exhibiting larger atomic relaxations than FeO2-type surface terminations. As a result, there is a significant contribution from the sublayers to charge compensation in LaO-type surface terminations.
Original language | English (US) |
---|---|
Pages (from-to) | 1931-1939 |
Number of pages | 9 |
Journal | Journal of the American Ceramic Society |
Volume | 94 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2011 |
All Science Journal Classification (ASJC) codes
- Ceramics and Composites
- Materials Chemistry